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Abstract  
Transportation supply (transportation system capacity/performance) and urban form define 

the opportunities and constraints operating on mode choice preferences of urban residents.  

We make use of the Transportation Tomorrow Surveys (TTS), which are household travel 

surveys conducted in the Greater Toronto and Hamilton Area (GTHA) in 1996, 2001 and 

2006. Such a large and repeated cross-sectional travel demand survey data set provides an 

uncommon opportunity to investigate structural changes in mode choice preferences over 

time, in a manner sensitive to choice context changes. In this paper, we focus on commuting 

mode choices, which are prime determinants of peak period congestion and peak spreading. 

The outcomes of this investigation yield a better understanding of peoples’ mode choice 

preferences in GTHA, elucidate the impact of transport supply and urban form on behavior, 

and therefore provide guidance to better policy development to influence transit usage. 
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1. Background and Motivation 
 

Transportation supply (transportation system capacity/performance) and urban form help define 

the opportunities and constraints operating on mode choice preferences of urban residents. Policy 

changes over time affect investments in transportation system, which eventually affect 

transportation system performance as well as urban form. This is observable for the Greater 

Toronto and Hamilton Area (GTHA), which has experienced significant variation in policy focus 

over the last three decades, from auto-oriented to transit-oriented policies, to which are added the 

effects of smart growth land use policies. Despite efforts to reduce automobile and encourage 

transit use, peak period traffic congestion in GTHA continues to increase.  

 

Besides the obvious effects that characteristics of the social, economic, and transport systems 

have on mode choice, it is possible that the policy instigated changes to the transport system will 

not only create impacts on users via changes in transport system performance (cost, time, 

accessibility, etc.), but will also affect commuting mode choice decision difficulty. That is to say, 

transport system changes may generate decision contexts in which it is more difficult for the 

decision maker to correctly identify the optimal (i.e. highest utility) modal alternative, leading 

ultimately to a higher incidence of sub-optimal mode choices across the population. Ultimately, 

sub-optimal user decisions will lead to sub-optimal transport system performance. It has been 

suggested in the literature that this phenomenon can be recognized in random utility models by 

appropriate parameterization of the scale factors to capture decision context complexity (Swait 

and Adamowicz 2001). 

 

Most commuting mode choice models presented in literature are based on cross-sectional 

datasets of travel diary surveys (among many others, recent examples are Heinen et al. 2012, 

Tsamboulas et al. 2012, Habib 2012, Zaman and Habib 2011). In addition to modal 

characteristics, such cross-sectional methods also can investigate the effects of various 

contextual factors involved in such situations (for example Long et al 2010).  

 

However, it is possible that preferences for commuting mode choice evolve/change over time, 

but mode choice models developed using only one crossectional travel survey data set may not 

have the capacity to capture such changes. Clearly, though, mode choice models designed to 

forecast future demand and/or investigate various congestion mitigation strategies will produce 

more accurate and robust forecasts if they can describe preference evolution over time. While 

commuting mode choice models are commonly employed by almost all transportation planning 

agencies and many advanced choice models are tested for commuting mode choice, to our best 

knowledge no one has investigated the evolution of commuter preference for commuting mode 

choice. For such investigations, large scale multi-period datasets are necessary to capture basic 

trends and produce consistent estimates. While having panel data of such scale is almost 

impossible because of cost, repeated cross-sectional data collected from the same study area can 

be used.  

 

In this paper, we use such three repeated cross-sectional household travel surveys collected from 

the same study area over the period of 10 years. Our objective in this paper is to detect whether 

changes occurred in both systematic and random components of mode choice utility over time. 

Potential preference changes will be linked to individual-level decision difficulty (arising from 
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transport system performance and urban form) via the choice models to be estimated. 

 

The paper is arranged as follows: the next section presents a brief literature review, which is 

followed by a section explaining the econometric model formulation used in this study; a brief 

description of the datasets is then presented, which is then followed by a section presenting the 

empirical models and temporal transferability. The paper concludes with a discussion of key 

findings and an agenda for further research. 

 

 

2. Literature Review 
 

Although temporal transferability of commuting mode choice models (i.e., the ability of 

commuting mode choice model to predict future choice behaviour) was first recognized as an 

important issue in the early 1970’s, there has been a significant drop in interest in recent years. 

This may mostly be due to a shifting focus to the development of advanced models without 

necessarily considering temporal transferability of modelling structures to future behaviour (Fox 

and Hess, 2010).  

 

One of the earliest exercises of testing transferability of mode choice model is reported by 

Watson and Westin (1975). They used a binary logit model for mode choice and tested 

transferability against an aggregate modal share model for the Edinburg-Glasgow area. They 

concluded that only the disaggregate choice model accurately captured generic choice behaviour 

and should therefore be used for predicting to future scenarios. Parody (1977) developed a 

multinomial logit model for commuting trips to and from the University of Massachusetts, 

Amherst campus. He used two datasets collected one year apart and tested the predictive 

capacity of mode choice models. He found that model performance remained stable over a year 

even though there were substantial changes in parking and public transit services.  

 

Ben-Akiva and Atherton (1977) investigated spatial and temporal transferability of multinomial 

logit mode choice model. They compared parameters of transportation level-of-service attributes 

of logit mode choice models developed for New Bedford, Washington, Los Angeles and San 

Francisco. Also, they used models developed for one city to predict aggregate modal share of 

another city. They found that mode choice models developed for one city can give very accurate 

prediction for another one if the alternative-specific constants of the logit mode choice model can 

be updated for the local area. They also report temporal transferability test results for commuting 

mode choice models. They used the multinomial logit model developed by using a dataset 

collected in 1970 to predict aggregate modal share of 1974, which is then compared to observed 

modal share data collected in 1974. They found that the earlier model was capable of predicting 

changes in mode choice preferences resulting from the implementation of transportation 

management strategies such as bus-only lanes and encouraging carpooling. 

 

Train (1979) developed a multinomial logit model for commuting mode choice by using a 

dataset collected in 1972 and then predicted to compare with a dataset collected in 1975 from the 

San Francisco Bay area. In between these time periods the Bay Area Rapid Transit (BART) was 

opened. The focus of this paper was purely testing the predicting capacity of different mode 

choice model specifications. It found that behavioural complexities in terms of changing patterns 
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over time could only be captured through complex model specifications based on the use of  

interacting socio-demographics with transportation variables (cost divided income or wage, etc.).  

 

McCarthy (1982) used household travel survey data collected in 1973-1974 and in 1975, just 

before and after the opening of BART in the San Francisco Bay area. He developed multinomial 

logit models for commuting mode choice by using two datasets and compared the coefficients. 

Results showed that over the short time period model parameters remained stable. Regarding the 

predictive capacity of the logit mode choice models, his finding was that the model developed by 

using older dataset and then updated with supplemental data of the future year can give very 

similar result to estimating the entire model solely on the future year dataset.  

 

Silman (1981) followed a similar approach for testing temporal transferability of commuting 

mode choice model. He estimated logit mode choice models for datasets collected in 1972 and 

1976. Silman found that most of the model parameters were stable except for household vehicle 

ownership level. Interestingly, most of the mode choice model parameters remained stable 

between 1972 and 1976, even though there were significant changes in transportation 

infrastructure. 

 

Badoe and Miller (1995) were the first to investigate very long range temporal transferability of 

commuting mode choice models (again, a multinomial logit model). They used two datasets 

collected from Greater Toronto Area (GTA) in 1964 and 1986. Their first interpretation of model 

transferability tests was that mode choice model parameters were not temporally stable though 

they provided significantly useful information for planning and analyses. They also identified 

that appropriate specification is very important to capture the changes in model parameters over 

time. From the perspective of our work, an important finding of this study was that the mode 

choice model scale parameter (which is normally defaulted to one in multinomial logit models) is 

very crucial in capturing the trends in model choice preference structure over the long-term time 

period. This study used almost the same study area as of our current investigation and the survey 

used to collect those datasets eventually evolved into the Transportation Tomorrow Survey (TTS). 

The TTS survey evolved into a stable survey design in terms of questionnaire and study area in 

1996. Since then, two more surveys were conducted in 2001 and 2006 (and the most recent one 

is currently underway). These three consistent TTS datasets are used for the investigation in our 

paper. 

 

Karasmaa and Pursula (1997) investigated transferability of mode choice models for Helsinki 

Metropolitan area between 1981 and 1988. They identified that appropriate method and sample 

size are two major factors affecting the temporal transferability of mode choice models. Gunn 

(2001) used datasets collected in 1982 and 1995 in the Netherlands to investigate transferability 

of mode choice models. They highlighted the importance of considering the scale parameter of 

the logit model in explaining changes in mode choice preferences over time. In a recent study, 

Sanko and Morikawa (2010) investigated the factors that may affect temporal transferability of 

mode choice model. They used datasets collected in 1971 and 1991 in the same study area in 

Japan and highlighted the importance of considering utility scale for explanation of better 

transferability. Their investigation was mostly focused on developing updating techniques for 

better transferability rather than investigating the evolution of mode choice preference structure. 
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Key lessons learned from our literature review are that investigating changes in mode choice 

preference structure over time requires a) large scale and consistent datasets collected from the 

same study area, b) as well as an appropriate modelling structure that can capture the changes in 

preference and scale over time. All of the previous temporal transferability studies focus mostly 

on how transferable the model forecasts are rather than looking at how stable the preference 

structures remain over time. Studies that found that earlier mode choice models captured the 

changes in mode choice preferences over time used very short time periods for temporal 

transferability analysis or smaller datasets and a simple modelling structure (smaller numbers of 

alternative modes, smaller number of observations, etc.). Investigations that found that the 

multinomial logit model did not capture the changes in mode choice preferences over time used 

very long time period for temporal transferability analysis (over 15 to 20 years) and also 

investigated the reasons and/or factors that might underlie the issue of non-transferability. 

 

To advance knowledge in this critical area of travel demand modelling, in this study we focus on 

investigating the stability of commuting mode choice preference structures over time. Rather 

than simply testing model performance in temporal transferability (or forecasting), we probe 

more deeply into the reasons or factors that might cause non-transferability of mode choice 

models. We used three large scale household datasets collected from the same study area over 5 

year time intervals. 

 

Our data come from the Transportation Tomorrow Survey (TTS), which is a household travel 

survey conducted in GTHA among five percent of households in 1996, 2001 and 2006 (DMG 

2012). Such a large and repeated cross-sectional travel demand survey data set provides an 

opportunity to use an advanced econometric modelling approach to investigate structural 

changes in mode choice preferences over time, in a manner sensitive to context changes. We 

focus on commuting mode choices, which are prime determinants of peak period congestion and 

peak spreading. 

 

From the modelling perspective, we address our main research question by estimating a 

Heteroskedastic Generalized Extreme Value (Het-GEV) model and the Het-GEV with 

entropy-based scale parameterization (Swait and Adamowicz 2001). Our focus is the 

identification of temporal evolution patterns of both systematic and random components of 

commuting mode choice utility in the study area. We develop individual year specific models as 

well as pooled data models. For pooled models, the datasets of individual years are pooled 

together to capture the longitudinal trends in preference structure changes by making possible the 

testing of the hypothesis of systematic utility stability while accounting for decision complexity 

arising from transport supply and urban form considerations. One of our main objectives is to 

identify the model specification with highest degree of temporal transferability as well as the 

elements of structural changes in mode choice preferences. The model formulations we examine 

have in common that they are expressed by closed form econometric models, thus avoiding 

distributional assumptions required for mixed logit models. The next section explains the 

econometric model formulations. 

 

 

3. Econometric Model Formulation 

The commuting mode choice model class we adopt here is built on the Random Utility Model 
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(RUM) class of choice representations. Let us define the utility function of a commuting mode as 

imimim VU  ,         (1) 

where Uim refers to the total utility of choosing mode m by individual i; Vim refers to the 

systematic component and εim to the random component of this total utility. Here, the number of 

individual commuters varies from i=1 to i=N and the number of alternative modes available to 

any individual may vary from m=1 to M (the mode allocation rule is explained later). Under the 

RUM assumption, an individual commuter maximizes her total utility in choosing a commuting 

mode. From the researcher’s point of view, total utility of mode choice is therefore stochastic, 

though fully known to the traveler. Thus, the choice probability for a given mode is governed by 

the distribution of the random component of the total utility function. The Generalized Extreme 

Value (GEV) choice family is obtained by assuming that the random component is GEV 

distributed with Cumulative Distribution Function (CDF), F(.) taking the form: 

  iMiii eeeeGF iMiii

 
 ,,.........,,exp),.....,,,( 321

321     (2) 

Here, G(....) is a non-negative and homogenous of degree greater than zero function (Ben-Akiva 

and François, 1983 cited in Daly and Bierlaire, 2006). This defines a multivariate extreme value 

distribution with the probability density function of choosing any mode, m, as (McFadden 1978):  

),....,.....,,,(

),....,.....,,,(
321

321

iMimiii

iMimiiiim

vvvvv

vvvvv

m

v
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eeeeeG

eeeeeGe
P        (3) 

In this formulation the fundamental assumption is that the marginal distribution of each random 

element has constant variance. The CDF of an extreme value distribution takes the form 

(Johnson et al. 1994): 

  

parameter   scalea0),6/()Var( Variance,                     

ConstantsEuler'is,)E( Mean,                      

 with exp)(

22

/





 





 eF

  (4) 

Dubin and Zeng (1991) prove that introducing heteroskedasticity in the marginal distribution of 

the random error term of the mode choice utility is not possible; rather we need to use the scale 

parameter to induce heteroskedasticity across the alternative modes and individuals. As per 

Dubin (1985), for a non-zero scale parameter with linear homogeneity assumption, we can 

re-write equation (2) as 

  imimeGF iMiii

 
 exp),.....,,,( 321  .     (5) 

The corresponding marginal distribution of any random element, εim is  

)exp())0,......,,.....,0(exp(),......,,.....,()( imimimim eaeGFF mimim

 
 . (6) 

Here, am =G(δ1m, δ2m, δ3m,..... δNm) and where δim=1 if i=m, 0 otherwise. Equation (6) is an 
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extreme value distribution with variance (π
2
/6μim

2
). This leads to the formulation of the 

probability of choosing mode, m, by an individual, i, as 

   imimimimimim VV

m

V

im eGeGeP


/  .      (7) 

For a commuting mode choice situation, it is very much likely that a Tree-MNL (Daly 1985, 

Koppelman and Wen 1998) structure as presented in Figure 1 would be appropriate because of 

the presence of unobserved shared properties of certain mode clusters. In this figure, the scale 

parameter (µ, µT and µA) of each mode cluster is shown next to the corresponding construct node. 

The generating function corresponding to the tree structure depicted in Figure 1takes the form: 
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RTLTm
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


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


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






 

 ,,

    (8) 

This G(.) function with root scale (µ) is subscribed to by the individual commuter, with the 

second level scales (µT and µA) varying by corresponding mode clusters. 

 

Figure 1: Mode choice tree 

Since this generating function is additive (Swait 2003), the mode choice probabilities of this 

decision tree can be expressed as the product of conditional probabilities, as specified in the 

following expressions (the subscript for the commuter is omitted from these expressions for 

clarity): 

Construct Nodes: 
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Unconditional Mode Choice Probabilities: 

AAADAD QPP  |          (20) 

AAAPPA QPP  |          (21) 
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TTLTLT QPP  |          (22) 

TTRTRT QPP  |          (23) 

NMTNMTNMTNMTNMT QQPP  |        (24) 

Itcan be assumed that the systematic utilities are given by linear-in-parameters expressions such 

as 

mmm
XASCV  .        (25) 

Here ASCm indicates the mode Alternative Specific Constant, Xm indicates a vector of covariates 

and β
/
 indicates the corresponding parameter vector. In this investigation, we are interested in 

capturing the evolution over time of scale heterogeneity in commuting mode choice for the 

GTHA. So, later we accomplish this by parameterizing the root scale parameter as a function of 

time. From equations (9) to (25), it is clear that the scale of the non-motorized cluster is not 

identified (or essentially, must be equated to the root scale) because it contains only one 

specific (or elemental) mode type. We parameterize the root scale parameter as a function of 

aggregate zonal variables (Z) capturing the spatial distribution of baseline choice behaviour: 

 Z
ti

 exp
)(
          (26) 

where γ is the coefficient to be estimated. 

In contrast, two separate scale parameters (μA and μT) characterize the auto and transit modal 

clusters respectively. To ensure positivity of scale parameters, we use exponential function as 

follows: 

 
AAt

 exp          (27) 

 
TTt

 exp          (28) 

where αA and α T are nest-specific constants corresponding to auto and transit nests. 

We are using crossectional and revealed preference mode choice data of multiple years collected 

in Greater Toronto and Hamilton Area (GTHA). To capture the changes in heterogeneity across 

the commuters and across the years, the variance/scale parameter of modal utility is made 

sensitive to the entropy implied by a traveller’s set of available modes. Parameterizing scale as a 

function of entropy allows capturing similarities/dissimilarities as well as the complexity (i.e. 

decision difficulty) implied by a choice scenario (Fiebig et al 2010; DeShazo and Fermo 2002; 

Swait and Adamowicz 2001).  

We argue that entropy captures the difficulty for the traveller to reach an optimal decision. Low 

entropy contexts contain modes that tend to dominate others, so decision difficulty is low: the 

best alternative is easily determined. High entropy contexts contain modes with very similar 



Habib et al 2012 

 

11 

 

levels of attractiveness, so again decision difficulty is low because any mode is just as attractive 

as the others. It is in medium entropy contexts (i.e. neither low nor high) that decision makers 

face greatest difficulty and can make sub-optimal choices. We propose to parameterize the root 

scale parameter as a function of entropy (H(Ci(t))),
1
 along with other aggregate zonal variables 

(Z), where Ci(t) is commuter i’s set of available modes in year t and  

 ZCHCH
tititi

  )()(exp
)(

2

2)(1)(
     (29) 

where, 





itiCm

imimtiCH
)(

ln)( )(   .      (30) 

θ1 and θ2 are coefficients to be estimated. 

We address shortly the definition of the entropy measure H(Ci(t)). This parameterization of the 

root scale allows the diagonal elements of the stochastic utility covariance matrix to be a 

function of time and the personal, point-in-time context of commuting mode choice. The 

quadratic argument in (29) reflects the above logic concerning the impact of context-driven 

decision difficulty.  

Note that equations (29) and (30) depend upon mode choice probabilities im, which are as yet 

undefined. Probability formulations (9)-(25) are the researcher’s view of the commuter’s mode 

choice process. In these formulations, it is implicitly assumed that the true parameters of the 

choice making process are intermixed with random errors generated by the context of mode 

selection (i.e. the economic, social and transportation systems). The relative magnitude of the 

influence of stochastic utility compared to the systematic component on choice probability is 

defined by the variances of the modal stochastic utilities. However, it is fair to assume that the 

commuter knows his/her own true tastes and hence, the entropy proxy can directly use the taste 

parameters of the utility function to define decision context complexity (Swait and Adamowicz 

2001). Accordingly, this proxy is defined as a simple MNL model for the m’s in expression (27): 






iCj

ij

im

im
V

V

)exp(

)exp(
 ,        (31) 

where modal utilities (V) are given by expression (25). It is clear that we consider a 

homoskedastic logit model formulation to specify choice entropy, which is then used to 

parameterize the scale parameter of the Het-GEV model. Such specification captures the 

non-linear and complicated relationship among user’s perceptions, choice contexts and the final 

choices. It is also advantageous that such formulations yield a closed-form probability function 

for mode choice, which allows the use of classical maximum likelihood estimation techniques. In 

this paper, the empirical models are estimated by codes written in GAUSS and using the 

                                                        
1
 In these subsequent cases, the subscript t is put within the bracket. This is to indicate the individual person i at time 

period t. Since we don’t have panel data, person i may not be in multiple time periods within the dataset. 
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MAXLIK component for maximum likelihood estimation (Aptech 2012).  

4. Datasets for Empirical Investigation 
 

The data used in this investigation are sourced via the Transportation Tomorrow Surveys (TTS). 

These are Revealed Preference (RP) surveys that randomly sample 5% of the GTHA every 5 

years, recording the detailed travel records of households within the study area for a single day 

(DMG, 2012). The survey collects trip origin-destination zone identification, trip departure times, 

trip types, modes of transportation and transit route information for individual-level trip data. In 

addition, it also collects home and work locations information for workers, as well as household 

and individual-level socioeconomic attributes (e.g., household size, household vehicle ownership, 

transit pass ownership, individuals’ age, gender, education). The survey was first started in1986 

with a smaller study area than that of the later surveys. The second survey was in 1991, which 

experimented with a slightly different trip type classification as well as alternative sampling 

strategies. 

 

The survey was stabilized from 1996, so that the 1996, 2001 and 2006 data collection efforts 

were conducted using the same instrument and sampling strategy. Since our interest is the 

exploration of the temporal stability of mode choice preferences, it would seem that tracking 

travel behaviour over time for a panel of households would be best. As noted before these three 

waves of survey data do not constitute a panel; however, they are the next best thing since they 

do constitute repeated cross-sections of GTHA households, collected five years apart over a 

ten-year period. 

 

The TTS survey classifies commuters into four major occupation groups: general office, 

manufacturing, professional, and retail/service. We consider occupation-specific dummy 

variables to capture effects of job type on mode choice preferences. Unfortunately, the data set 

does not include individual- or household-level income information. In order to obtain a 

surrogate measure, median zonal income is considered as a variable in the empirical models. The 

TTS data sets do include other socioeconomic attributes: e.g., age, gender, household size, 

number of cars in the household. 

 

For commuting, the TTS identifies six modes of transportation: (1) auto driver; (2) auto 

passenger; (3) local transit; (4) park and ride with local transit; (5) park and ride with 

inter-regional transit (termed ‘GO Transit’); and (6) non-motorized modes. Calibrated and 

validated EMME/2 networks for 1996, 2001 and 2006 are used for generating level-of-service 

attributes of auto and transit modes. To specify choice sets for commuting mode choice, we used 

modal feasibility rules commonly employed by the planning agencies in the study area and are 

developed based on local knowledge and experience (Miller, 2007). These include: 

 

 Auto driving mode is feasible if the commuter has a driving license and own at least one 

private automobile. 

 Auto passenger mode is available to everybody. 

 Transit modes are feasible if the corresponding origin-destination pair of the commuter 

has transit service. In terms of reasonable transit service, we define the availability of 
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transit options with alternative access modes if the total travel time is less than 150 

minutes in one direction. 

 The non-motorized mode is considered feasible if the distance between the 

origin-destination pair of the commute is less than or equal to 10 kilometres (for walking 

the maximum threshold distance is 3 kilometres and for biking the maximum threshold 

distance is 10 kilometres).  

 With respect to access modes (GO transit and local transit, and auto), it is assumed that 

the commuters access their closest (by straight-line distance) feasible station with on-site 

parking. This consideration is made in an effort to avoid unnecessary complexity in the 

mode choice model while still maintaining a practically large number of observations for 

econometric model estimation.  

 

After eliminating all missing values and applying all feasibility rules a total of 67,094, 76,071 

and 55,927 individual commuting trip records remained for 1996, 2001 and 2006, respectively. If 

sampling weights are used to expand the samples, the total number of daily commuting trips is 

1,354,834 cases for 1996, 1,295,718 cases for 2001 and 1,069,252 cases for 2006. These are very 

large datasets and are suitable for investigating the type of behavioural trends we are researching 

in this paper. A total of seven alternative commuting modes are defined for these data: 

1. Auto driving (AD) 

2. Auto passenger (AP) 

3. Transit with walk access (TWA) 

4. Local transit with auto access (park & ride) (TAA) 

5. GO transit with local transit access (GTTA) 

6. Go transit with auto access (park & ride) (GAA) 

7. Non-motorized (NMT) 

  

 
Figure 2: Comparison of Modal Shares for Commuting in the GTHA 

 

Figure 2 presents a comparison of observed aggregate modal shares for the three survey years in 

the study area. From 1996 to 2006 auto driving dependency increased about 10 percent for the 

commuters in the GTHA. Auto passenger modal share was relatively more stable over the 
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interval. Modal share of local transit with walk access mode declined from 1996 to 2001 and 

2006 significantly. The local transit park and ride mode share was stable over time. Modal share 

of GO transit with local transit access as well as GO transit with park and ride modes slightly 

declined slightly with time. In general, mode choice preference changed with a significant boost 

towards use of the private car for commuting.  

 

Before estimating econometric models of mode choice, we sought to understand the patterns of 

mode choice preference distributions in the study area. Aggregate modal share gives a high-level 

view of mode choice preference patterns, but it does not provide much insight into the 

distribution of decision difficulty across the population. To have an empirical understanding of 

commuting mode choice preferences, we summarized zonal average entropy of mode choice for 

commuting. Entropy, for a particular spatial context, can explain the aggregate status or context 

complexities of specific decisions or choices (Wilson 2010). In the case of commuting mode 

choice, observed modal shares at the zonal level can effectively represent the spatial 

discretization of patterns observed in commuting mode choice preference structures. In this case 

zones represent small spatial units in the study area used to develop TTS sampling weights, 

which are compatible with census track units.  

 

We aggregated observed modal shares for each spatial zone. These shares are used to calculate 

observed entropy of commuting mode choice by using expression (30), but replacing individual 

mode choice probabilities with aggregate modal shares for the zone. It is well known that the 

entropy function achieves its maximum when choice probabilities or shares are equal; hence, 

since there are 7 possible modes, a particular zone can have a maximum entropy of 1.95-ln(1/7). 

Similarly, the minimum possible value of zonal entropy is zero, where only one mode is used and 

rest of all modes have no modal share. Thus, the higher the value of zonal entropy, the more no 

one mode dominates the others and the more varied the use of the modes across the zone’s 

residents.  

 
Figure 3: Distribution of observed zonal average entropy of commuting mode choices. 
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Figure 4: Changes in Population in Toronto and its Suburbs between 1996-2006 (source: 

Statistics Canada) 

 

Figure 3 presents the kernel density plots of zonal average entropy values for the three TTS 

survey years. The distribution of commuting mode choice zonal entropy has shifted to the left 

(i.e. on average decreased) since 1996 in the GTHA. The modal value of zonal entropy was 

greatest in 1996 and dropped significantly from 1996 to 2001. After 2001, it further dropped 

slightly in 2006. Interestingly, Figure 3 suggests that in 2006 the distribution of zonal entropy 

may be moving towards a bi-modal distribution. In 1996 the entropy distribution had a very 

sharp peak which flattened in 2001 and onwards. Having a sharp peak and higher modal entropy 

at the zonal level indicates a larger proportion of commuters with commuting alternatives that 

were more clearly advantageous.  On the other hand, the flattening out of the zonal entropy 

distributions after 1996 may indicate that the utilities of mode choice alternatives were more 

similar, making it more difficult for commuters to clearly identify the best mode for their work 

trips. Similarly, movement of the distribution towards bimodality may suggest multiple classes of 

commuters in the study area. Commuters living in zones that have greater mode choice 

flexibility because of access to multiple modes would be represented by an increase in a modal 

value towards the right of the distributions in Figure 3; those living in zones that have less mode 

choice flexibility would “clump” in a modal value towards the left of the distribution.   

 

Figure 4 shows relative population changes during the analysis time period (1996 to 2006) in 

Toronto and its surrounding suburbs. Suburbs closer to Toronto such as Mississauga, Brampton, 

Milton, Richmond Hill, Vaughn, etc., have higher population growth than the suburbs farther 

from Toronto, such as Caledon, Aurora, Georgia etc. Relative to Toronto, every other area has 

experienced a large population surge. Hulchanski et al. (2007) noted that Toronto has been 

undergoing changes in terms of income polarization and social gentrification resulting in 

multiple classes of population having different lifestyles. Similar findings are also reported by 

Hackworth and Rekers (2005), who also recognize such changes in Toronto. There has been a 

significant change in socio-economic class structure in the study area between 1996 and 2006. 

Figure 3 suggests that the structure of commuting mode choices has also changed. Observed 

changes in commuting mode choice preferences should be, at least in part, the reflections of 
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individual commuters’ difficulty or complexities of making optimal or desirable decisions for 

commuting mode choice. The next section presents the empirical models and discussions of 

factors influencing commuting mode choice preferences in the GTHA.  

 

 

5. Empirical Models 
 

Table 1 presents the summary of empirical model parameters. A total of six models are presented. 

For each of the years 1996, 2001 and 2006, two models are presented: the HET-GEV model 

represents the GEV model with root scale parameterized as function of zonal median income and 

the Entropy-based HET-GEV model includes the additional entropy (decision difficulty) term in 

the root scale parameter function. Goodness-of-fit of the models is measured by estimating 

likelihood ratio values against the equiprobable and aggregate market share models. 

Goodness-of-fit values are higher against the equiprobable (or null) model than the market model. 

In case of goodness-of-fit against market shares, the likelihood ratio value is over 0.2 for all 

models, which represents a very good fit of the advanced models developed in this paper (see 

Ben-Akiva and Lerman 1985). It is also clear that Entropy-based HET-GEV models give slightly 

higher likelihood ratio values against aggregate shares.  

 

This reveals the power of capturing choice complexities in scale parameterization through the 

entropy measurements. In all cases, models of 2001 provide the highest fits followed by the 

models of 1996 and then 2006. The reported model specifications are the best specifications 

among a series of alternative specifications for systematic utility function in terms better 

likelihood ratio values and higher numbers of statistically significant parameters. Statistical 

significance of the parameters is tested by comparing estimated asymptotic t-statistics with the 

95 percent confidence limit of 1.96. It is to be noted that all parameters the models are highly 

significant except for one in the 2001 model. We retained the same parameter sets for all models 

to allow comparisons across the years.    

 

 
Figure 5: Comparison of alternative mode specific constants 
 

Figure 5 allows comparison of mode-specific constants in the model. Overall, the mode-specific 

constants are lower for the entropy-based HET-GEV models. Note that in the case of the 

HET-GEV models the constants do not vary across the years except in the case of the GO park 

and ride mode. For the entropy-based HET-GEV model, mode-specific constants are higher 
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across the modes for 2001 and 2006 compared to 1996 with almost equal values for 2001 and 

2006. This suggests that there seem to have been some changes in overall commuting mode 

choice preference structures between 1996 and 2001-2006 that are not explained by the variables 

used in the model. This does not seem to have been detected by the HET-GEV model.      

 

In terms of level-of-service attributes, the time and cost variables are specified as generic across 

the modes in the models. In the case of cost, since we did not have income available in the 

dataset, we estimated separate cost variables for each occupation category, but maintain the 

generic assumption across modes within occupation. Surprisingly, sensitivity to in-vehicle travel 

time remains exactly the same over the years, but sensitivities to travel cost vary substantially. 

Such variation of cost sensitivity is significant across the occupation groups and there is a huge 

jump between 1996 and 2001. Table 2 summarizes the values of in-vehicle travel time savings 

and Figure 5 plots the values comparatively. 

  

  
Figure 5: In-vehicle travel time savings 
 

Both types of models suggest that willingness to pay for reduced in-vehicle travel time increased 

significantly in 2001 compared to 1996, and then decreased somewhat in 2006. It is to be noted 

that the cost variables are specified in the corresponding year’s dollar values. The HET-GEV 

model predict that between 1996 to 2001 the willingness to pay increased 2.54 times for 

professional occupation group, 2.30 times for general office occupation group, 1.66 times for 

service occupation group and 1.27 times for manufacturing occupation group. However, the 

Entropy-based HET-GEV model predicts a much higher rate of increase: 3.98 times for 

professional occupation group, 3.63 times for general office occupation group, 2.92 times for 

service occupation group and 2.28 times for manufacturing occupation group. The CPI index 

reported by Statistics Canada for the study suggests that the cost adjustment between 1996 and 

2001 would be at most 1.11 times (Statistics Canada, 2012). So, it is clear that willingness to pay 
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increased beyond the regular price adjustment rate for inflation. Since in the model formulation 

we assumed that the marginal disutility of time remains constant, the marginal disutility of cost 

must necessarily decrease (become less negative in magnitude).  This is plausible given the 

usual assumption of the diminishing utility of consumption associated with increased income.  

 

As noted before, we did not have access to personal or household income data to capture income 

effects. However, comparing the zonal average income we realized that average income did not 

increase significantly from 1996 to 2001. Also, there were no significant transport infrastructure 

changes during that period in the GTHA. So we are left with the explanation that there may have 

been changes in social structure, economic activities and demography (in-migration and 

out-migration) resulting from the very high suburbanization in the study area, causing a 

significant decrease in marginal disutility of cost for commuting trips. Compared to 2001 and 

2006, the HET-GEV model predicts a small increase in willingness to pay for in-vehicle travel 

time savings, but the Entropy-based HET-GEV model actually predicts that the values decrease 

slightly for all occupation groups. However, it is interesting to note that after a huge drop in 

marginal disutility of commuting trip cost in 2001, it stabilized by 2006.  

 

Disutility of the access and egress distances for non-motorized modes is captured by discretizing 

walking distances. Empirically, it is seen that the utility of non-motorized modes decreases 

sharply with increasing distance. The highest utility of non-motorized mode is for the distance 

below 1 kilometre and it drops significantly for the distance between 1 to 2 kilometres and so on 

for the distance between 2 to 3 kilometres. These coefficients do not change significantly across 

the years despite the continuous efforts to promote active transportation (non-motorized mode of 

transportation) for commuting by various government and non-government organizations in the 

study area. However, it is clear that the HET-GEV model overestimated the distance effects on 

non-motorized mode choice compared to the Entropy-based HET-GEV model. Access walking 

time has proven to be very influential factor in transit mode choice option. The HET-GEV model 

predicts that the negative influence of access walking time increased 5 times from 1996 to 2001 

and then decreased slightly in 2006. However, the Entropy-based HET-GEV model predicts that 

it in fact increased 3 times from 1996 to 2001 and then become constant.  

 

We also calculated the willingness to pay for reducing walking time and waiting time for transit 

access as reported in Table 2. Both types of models predict that there was a huge jump in 

willingness to pay for reducing walking and waiting time for transit access between 1996 and 

2001, and that it then stabilized in 2006. This parallels what was discussed earlier for in-vehicle 

travel time savings. In terms of absolute values of willingness to pay for saving walk access time 

to transit in 1996, commuters’ willingness to pay was nearly similar to the willingness to pay for 

reducing in-vehicle travel time. However, in 2001 and 2006, willingness to pay for transit 

walking access time becomes more or less 4 times larger than the corresponding willingness to 

pay for in-vehicle travel time savings. Intuitively the willingness to pay for reduced waiting time 

for transit is the highest and it also suffered sharp jumps between 1996 to 2001 and 2006.  

 

To us, these effects are all indications of the massive suburbanization that occurred between 1996 

and 2001, which resulted in poor walking accessibility to transit services, leading thereby to a 

big rise in auto driving as well as a sharp drop in transit modal share. However, between 2001 

and 2006 there had been investments in transit infrastructure: two notables examples are a) a 
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subway link was added to Toronto’s existing subway network and b) the VIVA bus rapid transit 

was introduced in the York region, one of the suburbs in GTHA. Such investments caused the 

commuting mode choice preference structures to be stabilized after 2001. 

 

In addition to level-of-service attributes, we also considered a series of household 

socio-economic and personal characteristics in the systematic utility function. Having more than 

2 cars in the household increases the availability of car for commuting and has a positive effect 

on the auto driving commuting option. However, the HET-GEV models predict that the influence 

of this variable remain more or less constant over the years, but the influence of this variable is 

larger in the HET-GEV model compared to its influence in the Entropy-based HET-GEV models. 

Similar effects also obtain for having one car in the household on auto passenger mode choice 

utility. For more than 2 cars per household, the HET-GEV model predict much higher effects on 

systematic utility of auto driving and auto passenger mode choice utility compared to those 

predicted  by the Entropy-based HET-GEV model. Similarly, having a higher number of cars in 

the household increases the opportunity for a park and ride option and both types of models 

predicts this. It seems that effects of this variable remain stable over time, but the HET-GEV 

models over predict its impact compared to the Entropy-based HET-GEV model. 

 

In terms of personal characteristics, it seems that the effects of gender (females preferring all 

other modes over auto driving options compared to males) on mode choice utilities of auto 

passenger, local transit with walk access and subway park and ride and non-motorized modes 

decreased over time from 1996 to 2006. Also, it seems that the HET-GEV models overstate 

gender effects for these modes compared to Entropy-based HET-GEV models. Commuters’ ages 

seem to have significant effects in commuting mode choice preferences. Clearly, compared to 

younger and older generations, the age group of 30 to 55 years old prefer auto driving and park 

and ride type commuting modes over all other modes. However, this age group prefers 

non-motorized and local transit modes more than the older age group (age over 55 years). It is 

also clear that the HET-GEV models estimates larger age effects on commuting mode choice 

utilities compared to those in the Entropy-based HET-GEV models. 

 

The root scale of the HET-GEV models are parameterized as exponential functions of zonal 

median incomes. In addition, modal nest specific constants are also estimated considering the 

non-motorized modes as the base case. In this model specification, it is only possible to identify 

the coefficient of the auto nest (auto driving and auto passenger modes), while those of other 

nests (transit nest and non-motorized nest) must be held constant. This is a clear indication of 

higher correlation between auto driving and auto passenger modes over time. The coefficient of 

zonal median income decreased over time in the Entropy-based HET-GEV model. Decreasing 

values of this coefficient indicates decreasing root scale parameters and thereby decreasing 

heterogeneity across the study area. However, this effect is balanced by the entropy function 

included in the root scale parameterization. Estimated coefficients clearly identify the quadratic 

effects of mode choice entropy on scale parameterization as expected in the formulation. The 

coefficients are highly statistically significant, which suggests that the model formulations 

capture the hypothesized difficulty of decision making for commuting mode choices. 

 

Table 3 summarizes the estimated average values of root scale parameters for each survey year 

by the two types of models. It is clear that the HET-GEV model gives a lowers estimate of the 
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root scale parameters and thereby the commuting mode choice heterogeneity across the 

population. The Entropy-based HET-GEV model attributes higher values to the root scale 

parameters and their variations across the year. The latter model estimates that the root scale 

suffered a drop from 1996 to 2001 and remained constant in 2006. These imply fundamental 

structural changes in commuting mode choice preferences in the study area over the time period 

of 1996 to 2006. Reduction of root scale implicitly refers to increasing complexities/difficulties 

in making desirable mode choice preference for commuting.  

 

Table 3: Estimated Average Root Scale Parameter 

 

 
 

These results jointly raise the possibility that there may not be temporal transferability of mode 

choice models across the three years studied here. In the next section, we further investigate 

temporal transferability of the individual models for better guidance to develop a modelling 

framework for multiple repeated crossectional datasets that can accommodate evolution of 

structural preferences over time. 

 

5.1 Temporal Transferability and Pooled Data Meta Model 
 

Temporal transferability in general refers to the fact that the model developed in one year can 

replicate choice behaviour for any future year. We test below whether the 1996 models can be 

forward transferred to 2001 and 2006, as well as whether the 2001 model is transferable to 2006. 

We consider two disaggregate transferability measures, the transferability index (TI) and 

likelihood ratio (Transfer Rho-square) for evaluating temporal transferability of the models.  TI 

is a relative measure of strength of the transferred model over a market share model in 

comparison to the originally estimated model.  The transfer index is calculated: 
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where LLj(θj) indicates the loglikelihood value for the context year j of the model developed by 

using j
th

 year’s data; LLj(θi) indicates the loglikelihood value for the context year j of the model 

developed by using i
th 

 year’s data and  LLj(Market Share) denotes the log-likelihood of the 

market share model for the application context j.  The upper bound for this metric is 1, but 

negative values are possible (indicating that the transferred model is worse than the market share 

model). A similar measurement of transferability is defined by calculating the goodness of fit of 

the transferred model against market share model of the target year.  
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The upper bound for this metric is 1 and a higher indicates better goodness of fit against market 

Year HET-GEV Entropy-based HET-GEV

1996 0.92 1.37

2001 0.83 1.24

2006 0.93 1.23

Average Root Scale parameter
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share. It gives the fit against market share for the forecasting year.  

 

Table 4: Transferability Index and Transfer Rho-Square Values 

 

 
 

Table 4 summarizes the results of forward transferring both model types. Overall, the TI values 

indicate that the 1996 model can give more than 0.6 compared to the maximum limit of 1.0 in 

disaggregate transferability test. Interestingly, the 1996 model is more transferable to 2006 than 

2001. However, the 2001 model gives more than 98 percent accuracy in forecasting 2006 choices. 

In all cases, it is clear that entropy-based scale parameterization clearly improves temporal 

transferability of the models as the TI values are higher for entropy-based HET-GEV models. In 

case of Transfer Rho-Square measures, the 1996 model gives less than 0.2 goodness of fit for 

2001 and 2006. However, the 2001 model gives more than 0.25 goodness of fit for 2006 year 

forecast, which is considered reasonably good fitting (Ben-Akiva and Lerman, 1985). As in the 

case of TI, the Transfer Rho-Square values also prove the superiority of entropy-based 

HET-GEV model over HET-GEV model in temporal transferability. 

 

While the TI and Transfer Rho-Square measures give numerical evaluation of temporal 

transferability, it does not give any direction for improving model transferability by developing 

better specifications. So, in an effort to develop a comprehensive modelling framework that can 

capture temporal evolution of mode choice preference structures, we compared individual model 

parameters graphically. The main objective of this simple analysis is to identify the parameters 

that cause higher deviation from one model to the other (see Swait and Bernardino 2000). 

 



Habib et al 2012 

 

22 

 

 
Figure 6: Comparison of Estimated Model Parameters
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Figure 6 presents the comparisons of model parameters. Both HET-GEV and entropy-based 

HET-GEV model parameters are pair wise plotted (1996 versus 2001, 1996 versus 2006 and 

2001 versus 2006). In each plot the straight line represents the line on which all dots should align 

if both comparing models have exactly same parameter values. Parameters that differ most 

between the models are represented by the dots far away from this line. In all cases, 2001 model 

parameters are closer to 2006 parameters and 1996 model parameters are closer to those of 2001 

model than 2006 models. In case of HET-GEV model, alternative specific constants (ASC), scale 

parameter, age and gender are they three major variables that cause big deviations. In case of 

entropy-based HET-GEV models, the coefficient corresponding to the square of entropy 

measurement (components of root scale parameter) causes deviation while comparing 1996 

model with 2001 and 2006 models. Interestingly, parameters of the entropy-based HET-GEV 

model for 2001 shows perfect alignment with the parameter of corresponding 2006 model, 

except one age-specific variable. 

 

TI and Transfer Rho-Square value measurements show that crossectional models are not always 

transferable and the major probable reason is the evolution of preference structures of mode 

choices. While HET-GEV model captures deviations in ASCs and socio-economic variable 

parameters, entropy-based HET-GEV model also clearly shows that in addition to these, the scale 

parameter is also showing deviations. So, the challenge is to develop a modelling approach that 

can take advantage of multiple repeated crossectional datasets available for the same study area 

and at the same time comprehensively capture the evolution of preference structures.  

 

One of the possible ways is to pool the repeated crossectional datasets to support a generalized 

modelling framework. Pooling datasets collected in different years obviously requires updating 

cost variables considering the inflation rates. Also, various possible ways of specifying 

generalized modelling structures can be hypothesized. Based on the analyses of individual 

year-specific models and transferability measurements, it is clear that the pooled data model 

should, at least, consider changes in ASCs and scale parameters over time. Our analysis above 

suggests that the entropy-based HET-GEV model is the best option for model formulation in 

terms of temporal stability. For such a model formulation, one possible way of specifying the 

pooled data model is to consider alternative year specific ASC and scale parameters. However, in 

that case, the problem would be the difficulty in forecasting for future years for which the ASC 

and scale parameters would be unknown. To overcome this issue, we consider the year 1996 as 

the base year and included an additional component to each ASC and the scale parameter 

identifying the year of concern. So, for the pooled data over 1996, 2001 and 2006, we consider 

an entropy-based HET-GEV specification with equations 25, 27, 28 and 29 modified as follows: 
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where t is year and ’s are parameters and in equation 33-36 there is an implicit normalization 
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condition met by setting the reference year effect for 1996 to zero. This means, the temporal 

effects will only be added for the year 2001 and 2006. We consider logarithmic scale for 

temporal progression so that the linear-in-parameter temporal functions follow diminishing rate 

of changes with increasing time. It will ensure that for forecasting, the temporal progression 

effects do not dominate at least for short- or medium term forecasting. However, long-term 

forecasting may be problematic as these temporal components may become enormous and 

dominate the model predictions.  

 

Estimated model parameters of the pooled data model are presented in Table 5. The pooled data 

model accommodates temporal evolution of ASCs and scale parameters. Comparing the 

individual year-specific models, we found that the larger coefficients for the socio-economic 

variables cause problems in model transferability. In general, all socio-economic variables have 

smaller parameter values in the pooled data model than the individual year-specific models. Also 

several age specific variables are found statistically insignificant in the pooled model, but those 

were significant in the individual year-specific models. It seems that accommodation of the 

evolution of ASCs and scale parameters can reduce effects of socio-economic variables that may 

be the artifacts in the individual year-specific models. In terms of temporal effects, it is clear that 

ASCs of all modes decrease over time except for the GO Park & Ride and GO with Transit 

Access mode options. Interestingly, the root scale parameter decreases with time (the temporal 

effect is negative), but the auto nest scale parameter increases over time (the temporal effect is 

positive). While comparing parameters of the pooled model with individual year-specific models 

is difficult, we consider measuring model transferability of the pooled data model for the 

individual year specific models.  

 

We used the pooled model to test transferability to 1996, 2001 and 2006. Both TI and Transfer 

Rho-Square values are estimated to investigate how transferable the pooled model is to 1996, 

2001 and 2006. The results are: 

 Transferability Index (TI): 

1. Pooled model applied to 1996: 0.9464 

2. Pooled model applied to 2001: 0.9821 

3. Pooled model applied to 2006: 0.9787 

 Transfer Rho-Square Value: 

1. Pooled model applied to 1996: 0.2532 

2. Pooled model applied to 2001: 0.3030 

3. Pooled model applied to 2006: 0.3213 

The proposed pooled data modelling structure which is an entropy-based HET-GEV model with 

temporal adjustment factor clearly outperforms any individual year specific model. Interestingly, 

the TI values are very similar for 1996, 2001 and 2006, indicating that its performance is very 

nearly as good as each year-specific model. It seems that the pooled data model can give more 

than 0.94 compared to the maximum limit of 1.0 for transferability test. According to the 

Transfer Rho-square values, the pooled data model gives more than 0.25 goodness-of-fit for any 

year. Interestingly, it is clear that the temporal evolution of mode choice preference structure is 

mostly reflected in changing patterns of ASCs and the scale parameters. Also, it is clear that a 

proper capturing of such evolution can eliminate artificial influences of socio-economic variables 

that cause major problems in temporal transferability of the models. 
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6. Conclusions and Recommendations for Future Research 
 

The paper presents an investigation on stability of commuting mode choice preference structure 

over a 10 year time period. The study area is the Greater Toronto and Hamilton Area (GTHA), 

which is one of the major economic hubs in Canada and North America. The study makes use of 

a large scale household travel survey conducted in the GTHA every 5 years, named 

Transportation Tomorrow Survey (TTS). TTS survey data from 1996, 2001 and 2006 are used 

for our study. The datasets represent three repeated cross-sectional surveys in the same area at 5 

year intervals. We used these datasets to develop commuting mode choice models. As pointed 

out in the literature review, it seems that the choice model scale parameter can play a significant 

role in defining temporal transferability of the mode choice models. We are therefore led to 

employ an advanced econometric model formulation to address our research question. 

 

For commuting mode choice trips, we developed two related types of models: heteroskedastic 

GEV model (HET-GEV) and HET-GEV model with scale parameter parameterized as a function 

of entropy; this latter measure is argued to represent context complexity (Swait and Adamowicz 

2001). It is established that parameterizing scale parameter as a function of choice entropy in the 

entropy-based HET-GEV model is consistent with the assumption of a quadratic functional form, 

as suggested by Swait and Adamowicz (2001). Also the Entropy-based HET-GEV allows better 

highlighting the changes in preference structure than HET-GEV model. 

 

In terms of model specifications, two types of models are estimated: three individual 

year-specific crossectional models and a pooled data model that captures the evolution of ASCs 

and scale parameter of an entropy-based HET-GEV model over time. In term of temporal 

transferability, the pooled data model outperforms all other crossectional models in every count.  

 

A dey finding of this investigation is that there have been significant changes in commuting 

mode choice preference structure between 1996 and 2006 in the GTHA. Important social, 

economic and transportation system changes, all of which occurred in the GTHA during this 

period, create a forecasting challenge for any model based on a single cross-section. Interestingly, 

our analysis further suggests that temporal evolutions of preference structures may not be 

gradual over time. Major changes in preference structure happened between 1996 and 2001 and 

stabilized between 2001 and 2006. Fundamentally, it is clear that the ensuing changes to the 

transport systems, urban forms and population patterns have not only created impacts on 

commuters via changes in transport system performance (cost, time, accessibility, etc.), but also 

in terms of commuting mode choice decision difficulty. It seems that decision contexts for 

commuting mode choice in GTHA has been changing to a direction in which it is increasingly 

becoming difficult for commuters to correctly identify the optimal (i.e. highest utility) modal 

alternative, leading ultimately to a higher incidence of sub-optimal choices in the population. 

 

 Commuters’ sensitivity to in-vehicle travel time for commuting remains exactly the same over 

the years, but sensitivities to travel cost changed substantially between 1996 and 2001. However, 

the latter remained stable between 2001 and 2006. Such variation of cost sensitivity is significant 

across the occupation groups. As a result, the willingness to pay for reduced in-vehicle travel 

time increased beyond the regular price adjustment rate for inflation over time. In the case of 
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transit users, the willingness to pay for reduced waiting time for transit is the highest and it also 

suffered sharp jumps between 1996 to 2001 and 2006. 

 

While a gradual change in preference structure over time is explainable, a drastic and sharp 

change and then stabilization is more difficult to explain. Apparently, there were no significant 

transportation infrastructure change in the study area between 1996 and 2001, when the sharp 

changes in preference structure happened. Also, the average and median income of the 

population did not change significantly during this time period.  However, between 2001 and 

2006 new infrastructure was in operation when the stabilization of preference structure is 

observed. What drove the sharp changes in preference structure between 1996 and 2001 remain 

an issue for further study, but it is clear that massive suburbanization happened in the study area 

during this time, as supported by the observation that transit modal share for commuting dropped 

and auto driving modal share for commuting jumped during the period. Perhaps only 

suburbanization (and probably the resulting gentrification and other side effects of 

suburbanization) can cause such significant changes in commuting mode choice preference 

structures. While the suburbanization continued after 2001, new transportation infrastructures, 

planning policies, etc., might have caused the stabilization in mode choice preferences. This 

finding clearly suggests that mode choice models developed by using a single crossectional 

dataset should be used carefully for forecasting, and that change to the urban form and transport 

supply need to be accounted for in the process. Our work has suggested a systematic process for 

taking these factors into account. 

 

It is clear that preference structures for commuting mode choices are non-static and evolve over 

time. Mode choice models developed by using only one crossectional travel survey data set are 

highly unlikely to have the capacity to capture such changes. While commuting mode choice 

models are considered to be a critical work horse for almost all transportation planning agencies, 

it is important to find out appropriate model formulations that can give reliable forecasts for the 

future years. In general, it is almost impossible to state that a particular mode choice model will 

be temporally transferable in general. For example, our mode choice model developed by using 

1996 data does not transfer well to 2001 or 2006. However, the 2001 model performs quite well 

on the 2006 data (i.e., parameters remain very close for models developed for these two years). 

The correct economic modelling structure that can provide acceptable level of transferability in 

the face of any drastic changes in preference structure is something that needs further rigorous 

research, but it is clear that simple modelling structures (such as multinomial logit or even GEV) 

may not be sufficient.  

 

Based on such understanding, this paper proposes a pooled data model specification that can take 

the advantage of multiple repeated crossectional datasets. The proposed model considers the 

earliest year as the base reference year and accommodates a logarithmic function of increasing 

time to capture evolution of preference structures over time. In this paper, the proposed model is 

estimated by pooling 1996, 2001 and 2006 datasets for the GTHA. Our empirical model reveals 

that the root scale parameter decreases with increasing time, but that the auto nest scale 

parameter increases over time. This is an indication of increasing auto dependency and modal 

captivity that are evident in aggregate data. The pooled data model outperforms in all measures 

of model transferability. 
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Table 1: Individual Year Specific Models 
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Table 1 (Continued): Individual Year Specific Models 
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Table 1 (Continued): Individual Year Specific Models 
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Table 2: Estimated Values of Time Savings from Individual Year-Specific Models 
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Table 5: Pooled Model 
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Table 5 (Continued): Pooled Model 
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Table 5 (Continued): Pooled Model 

 

 

  


