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Abstract  

The paper presents an econometric model for departure time choice modelling. The proposed 

model is a discrete choice model with latent choice sets. As per the formulation of the mode, the 

model falls in the general category of Generalized Extreme Value (GEV) models with choice set 

formation, which is also known as a Generalized Logit (GenL) model. However, the proposed 

modelling framework uses a scale parameterization approach to capture heteroskedasticity in 

departure time choices. Hence, the model presented in the paper is a Heteroskedastic Generalized 

Logit (Het-GenL) model in general or specifically a heteroskedastic Paired Combinatorial Logit 

Model (Het-PCL). Empirical models are developed for the departure time choices for home-

based commuting trips in the Greater Toronto and Hamilton Area (GTHA). The datasets from 

the Transportation Tomorrow Survey, a 5 percent household based trip diary survey conducted in 

2006 is used for empirical model estimation. Separate models are estimated for private car and 

transit users’ departure time choices. It becomes evident that transportation level-of-service 

attributes enter into the systematic utility function as well as the scale parameter function with 

significant coefficients. The proposed econometric approach captures the normalization effect of 

different variables in terms of simultaneously influencing systematic utility as well as the scale 

parameter of random utility functions and thereby correctly explains the elasticity of 

corresponding variables.    
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1. Introduction and Motivation 
 

Increasing peak period traffic congestion makes transportation policies such as dynamic public 

transit pricing, road pricing, etc more feasible than before as these are intended to influence the 

distribution of travel demand throughout the day. However, designing such policies requires 

proper understanding of the nature of travel demand with respect to time-of-day choices. For any 

specific urban forms and land use conditions, elasticities of commuting departure time choices 

with respect to transportation level-of-service attributes are major factors that can define the 

success or failure of any demand management policies. So, this research is focused on improving 

our understanding of patterns and factors influencing commuting departure time choices. 

 

For proper and systematic investigation, it is important to use models that can capture the 

behavioural tradeoffs involved in commuters’ departure time decisions as this decision 

determines the distribution of demand on road and transit networks. Proper modelling techniques 

that enable the testing of a wide variety of hypothetical policy initiatives are required. This 

research aims to develop models of departure time in order to evaluate the effectiveness of 

various dynamic policy strategies in managing peak period travel demand for the Greater 

Toronto and Hamilton Area (GTHA).  

 

To capture tradeoffs involved in commuting trip departure time choices, we need to ensure that 

the time representation maintains a cumulative time-of-day sequence and that alternative time 

intervals that are not adjacent to each other are comparable (for example, the choice between 

travelling before or after the peak period). So, in this research, we discretize the 24-hour time 

period into alternative departure time choice segments and apply advanced discrete choice 

models that can accommodate the correlations between adjacent time slots. Addressing such 

correlation between adjacent time slots is necessary to address the issues related to boundary 

conditions due to time discretization. For example, a commuter departing at 7:55 AM may be put 

in a different time slot than a commuter departing at 8:05 AM. However, 7:55 AM and 8:05 AM 

are very close and may not be perceived as different time slots by the individual commuters.  

 

Such artificial boundary condition issues are avoided by accommodating the fact that adjacent 

time slots are, in fact, correlated in commuters’ perception of alternative departure time choices. 

We use a Heteroskedastic Generalized Logit (Het-GenL) model that can accommodate all of 

these issues and also capture heterogeneity across the population. Empirical models are 

estimated using data from the Transportation Tomorrow Survey (TTS), a Revealed Preference 

(RP) household travel diary collected in the GTHA in 2006. 

 

The paper is arranged as follows: the next section presents a review of existing relevant literature 

on departure time choice modelling to define the warrants for this work and to position this study 

in its context. Subsequently, the econometric model formulation for the departure time choices is 

presented. The empirical models are presented with interpretations of the model parameters and 

performance of the advanced models for sensitivity analyses. The study concludes by 

summarizing the key findings and by identifying potential future projects that may make use of 

this work. 
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2. Literature Review of Departure Time Models 
 

Departure time models represent an individual’s choice of a point or interval in time at which to 

begin a trip. Types of stochastic models used to represent the departure time choice include the 

multinomial logit model, the nested logit model, the cross-nested logit model, the mixed logit 

model, continuous time model, the Ordered Generalized Extreme Value (OGEV) model and its 

variants. Two key challenges in departure time choice modelling are accurately representing the 

continuous nature of time while allowing the comparison of non-adjacent alternative departure 

time slots and capturing the choice captivity to specific time slots. In most cases, investigations 

in the literature are focused on one of these issues specifically.   

 

An early example of departure time choice modelling was reported by Small (1982) who used 

the multinomial logit (MNL) model for modelling commuting departure time. Hendrickson and 

Plank (1984) also used MNL models of departure time interval choice jointly represented with 

mode choice to investigate the relative influence of different variables on mode choice versus 

departure time choice. Chin (1990) used the MNL model to represent morning commuting 

departure time in Singapore. In all of these applications of MNL, the day is divided into a 

number of discrete alternatives and MNL is applied to capture the tradeoffs between alternative 

time-of-day options. In the MNL model, systematic utility functions are specified as linear-in-

parameter functions of choice for commuting as a function of socio economic, level-of-service 

and work related variables. These applications of the MNL model show that it can capture 

systematic influences of various variables on departure choices, but there is no way to validate 

the accuracy of the estimates. There are doubts about the application of MNL for departure time 

choices as it does not capture the similarities/correlations between adjacent time interval choices. 

In the case of researcher defined time discretization, such correlation is obvious (as the 

commuters may not perceive time interval discretization in the same way as the researcher) and 

would cause a serious violation of the Independent and Irrelevant Alternative (IIA) assumption 

of MNL formulation (Russo et al 2009).  

 

Nested logit (NL) or Generalized Extreme Value (GEV) models can relax the IIA assumption by 

considering the nesting of alternatives in the form of hierarchical decision structures suitable for 

modelling departure time choice (Whelan et al 2002). Polak and Jones (1994) used a NL/GEV 

model to represent departure time choice for an investigation of road pricing policies. The 

nesting/clustering of discretized departure time forms the context of daily tours. This is a very 

specialized application of a departure time choice model. In such cases, an alternative can only 

be part of one nest or cluster and the alternative clusters are fully independent. It cannot capture 

multiple adjacent correlations between alternative departure time choices. For example, 7 am and 

8 am can be correlated in the same way that 8 am and 9 am are correlated. So a single alternative 

may be nested/clustered with different alternatives separately (such as 7 and 8 am; 8 am and 9 

am).  

 

The cross-nested logit (CNL) modelling structure can allow correlation between alternatives by 

placing alternatives in multiple nests and removing the assumption of fully independent subsets 

of alternatives as in NL or GEV (Vovsha, 1997; Papola, 2004). In a recent application, Bajwa et 

al (2006) applied a CNL approach in the form of a mixed nested logit model for departure time 

choice. They considered only three alternative departure time options: early departure, on-time 

departure and late departure. This version of CNL is a mixed logit with an error component; the 
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resulting likelihood function is in open form that requires a simulation estimation technique. As a 

variation on the cross-nested model structure, a continuous cross-nested logit model (CCNL) can 

also be used where time-of-day can be discretized into very fine resolutions and all possible 

correlations are to be addressed (Lemp et al. 2010). Such a model was applied for departure time 

choice modelling of work-tour departure time for the San Francisco Bay Area data. Such an 

approach is very robust, but the likelihood function no longer remains in a closed form. 

Estimation of such models poses considerable difficulty and cannot be estimated using classical 

estimation techniques. Lemp et al (2010) used Bayesian estimation techniques and also reported 

that the model performs similar to a continuous logit model. Their description of the continuous 

logit is an application of the MNL approach for a very large number of discrete time alternatives.  

 

The basic method that generates variations such as CNL or continuous CNL is the mixed logit 

model. Conceptually, the mixed logit approach is capable of capturing multilevel correlations 

among alternative departure time choices while maintaining the core MNL formulation 

(Kristoffersson 2007). De Jong et al (2003) used an error component logit model for departure 

time choice jointly with mode choice. Error component refers to inducing correlation among the 

random components of alternative discrete choice utility functions. Bajwa et al (2006) used a 

similar concept for modelling commuting departure time choice in Tokyo. Kristoffersson (2007) 

combines stated preference (SP) and revealed preference (RP) data collected from drivers in 

Stockholm to estimate a departure time and mode choice model, connected to a dynamic traffic 

assignment model. Borjesson (2007) also used a combination of RP and SP data in a mixed logit 

model to represent departure time choice, accounting for the response variation between stated 

and revealed responses. 

 

The mixed logit approach, in general, is very robust and can handle various types of correlations. 

However, a major challenge is the assumption of mixing distribution types for random 

correlations. Also, as a result of mixing distributions, the model formulations no longer remain in 

a closed form. Such models cannot be estimated by using classical estimation techniques. While, 

non-classical estimation techniques (simulation based estimation, Bayesian estimation, etc.) are 

now well developed, such model estimation takes considerable time and distributional 

assumptions are often arbitrary.   

 

Contrary to discrete choice modelling approaches, a number of researchers used a continuous 

decision modelling approach for modelling departure time choices. The earliest example of a 

continuous time departure time choice model is the equilibrium scheduling theory (EST) 

proposed by Vickery (1969). Later, Hyman (1997), van Vuren et al. (1999), de Jong et al (2003), 

Hess et al (2007) used the concept of EST for modelling departure time choice. In another study 

involving route choice, Arnott et al. (1990) considers the effects of varying pricing regimes on 

morning commuters’ departure time and route decisions and finds that these choices depend on 

travel time, and desired and achieved arrival time. They found that most of the reduction in 

congestion that may be realized by road tolling would be attributed to commuters’ change in 

departure time decisions. However, Vickery’s approach is narrowly defined for specific 

departure time options and the effects of congestion on deviation from preferred or desired time 

option.  

 

A more elaborate application of the continuous time approach for modelling departure time 

choice is to model the departure time choice as a continuous random variable. Abu- Eisheh and 
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Mannering (1989) used a discrete-continuous model for joint route and departure time choice 

model. They found that the continuous approach gives a very good fit to observed data. Bhat and 

Steed (2002) used a continuous hazard model to represent departure time choice for urban 

shopping trips throughout the day. They applied a non-parametric baseline hazard model to 

capture time reporting in 5 minute intervals in revealed preference (RP) data sets. Habib et al 

(2009) and Habib (2012) applied parametric baseline hazard models for continuous time 

departure time choices. Application of a hazard model for departure time choices does not 

necessarily capture explicit choice behaviour. In such cases, the departure time is just modelled 

as a non-linear regression model and it does not capture behavioural tradeoffs among alternative 

departure time choices.  

 

In comparison, Ettema and Timmermans (2003), Ettema et al (2007) and Habib (2011) presented 

a utility based approach for modelling continuous departure time choices. Ettema and 

Timmermans (2003) and Ettema et al (2007) used the utility of activity participation within a 

daily activity scheduling context for modeling the departure time choices. Their approach 

requires specialized datasets for modelling departure time choice. Conversely, Habib (2011) 

explicitly modelled commuting departure time choice by using trip diary datasets. He used a 

random utility maximization (RUM) based time allocation model for modelling continuous time 

departure time choices.  

 

The weaknesses of a purely continuous time modelling approach is its inability to capture the 

correlation of distant time intervals, making it unsuitable to a study of policies that may shift and 

spread peak period demand. Continuous time choice models are very well suited to capturing 

tradeoffs among adjacent alternative options. Alternatively, a continuous cross-nested model 

formulation (such as presented by Lemp et al. 2010) can overcome the limitations of a purely 

continuous time approach, although it induces a very high computational burden. 

 

The modelling approach that can bridge the gap between purely discrete and continuous choice 

modelling approaches is the ordered discrete choice model. Small (1987) provided an early 

definition of the theory of the ordered generalized extreme value model and studied the effect of 

work arrival time flexibility, occupation, and mode choice on departure time. The study found 

that carpoolers are likely to arrive early to work, that professional workers are likely to select 

later arrival times, and that workers with flexible work schedules tend to travel to work later in 

the morning. The ordered generalized extreme value (OGEV) captures the correlation of adjacent 

time interval alternatives which allows it to be used for policy analysis. Another benefit is that a 

closed form exists. OGEV models, unlike logit models, accept that the choice between adjacent 

and similar time intervals differs from the choice between distant time intervals (Kristoffersson, 

2007). The OGEV model matches the sequential nature of time where the correlation between 

ordered points is proportional to their proximity.  

 

A special case of the OGEV model is the dogit ordered generalized extreme value model 

(DOGEV). It combines an OGEV model with a dogit model, capable of capturing constraints in 

a choice set such as work start time captivity. Presented by Gaudry and Dagenais (1977), the 

dogit model can represent the choice between both independent and related alternatives. The 

dogit model includes a parameter that varies the influence of all attributes on each alternative 

choice. Fry et al. (2005) combined the dogit model with the ordered generalized extreme value 

model. The resulting DOGEV framework represents the choice between a set of ordered 
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alternatives, where a preference for particular responses exists. Chu (2009) used the DOGEV 

model to represent departure time choice for morning peak work trips in the New York City 

metropolitan area. The study indicates that workers are more likely to be constrained (by their 

work start time) to depart during time intervals in the middle of the peak period as compared to 

time intervals at the earliest and latest parts of the peak period. Trip cost was not found to 

motivate departure time choice, likely due to the fact that road tolls in New York are constant 

during the peak period. The weakness of the OGEV and DOGEV model formulations is that they 

are computation intensive when representing a large number of choice alternatives. Also, the 

estimation of such modelling structures would require parameters to follow particular cumulative 

gradation and constraints. Because of such complexities, very few empirical models of this 

category are available in literature. 

 

The literature indicates that the transportation industry recognizes the need for accurate departure 

time modelling; especially with the increasing efforts to move towards activity-based travel 

demand modelling approach from conventional trip-based approaches. From a practical policy 

application perspective, departure time needs to be represented with a discrete, but correlated, 

constrained, and computationally efficient modelling framework. Many existing model structures 

applied to study departure time choice exhibit some but not all of these characteristics.  

 

To complement to this area, this paper presents an innovative departure time choice model. It 

combines a heteroskedastic GEV structure with overlapping choice sets to account for both 

alternative choice correlation and choice captivity. Overlapping choice sets allows for the 

continuous nature of departure time choices as well as a tradeoff between distant time slot 

alternatives. In this proposed modelling structure, the choice probabilities are expressed as the 

probability of a choice set being selected multiplied by the conditional probability of selecting 

the choice from within the choice set. The probability that a choice set is selected depends on the 

expected maximum utility of the choice alternatives within the set. The model formulation 

allows individual choice alternatives to be in multiple choice sets and hence accommodates the 

latent choice set approach within the choice probability calculation. The next section explains the 

econometric modelling framework of the proposed model. The proposed model is an 

enhancement of the GenL model developed by Swait (2001). 

 

3. Econometric Model for Departure Time Choice 
 

The departure time model used in this study applies the Heteroskedastic Generalized Extreme 

Value modelling framework in combination with a Generalized Logit (GenL) and Logit 

Captivity approaches. The model explicitly represents the correlation between adjacent choice 

alternatives as well as the captivity of decision makers to specific choices due to schedule 

constraints.  Figure 1 presents the schematic diagram of the choice model. In this demonstration 

diagram, there alternative and sequential departure time bands are presented (D1, D2 and D3, 

where D1<D2<D3<D4)  
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Figure 1: Departure Time Choice Framework 

 

The concept is that the choice situation is composed of a series of choice sets and a particular 

alternative can be part of multiple choice sets. For example, in Figure 1, there are 4 alternatives 

and 9 possible choice sets are considered. Choice sets C1, C2, C3 and C4 consist of only one 

alternative referring to the captivity of only one alternative in the choice set. The following 

choice sets are formed maintaining the sequence of the adjacent alternatives. In the example 

shown in Figure 1, alternatives are clustered alone, with one/two adjacent alternatives.  

 

However, the clustering of alternatives in choice sets can go further. Specifically in addition to 

clustering with immediately adjacent alternatives; we can even consider clustering with two 

adjacent alternatives, clustering with three adjacent alternatives, so on and so forth. However, if 

additional clusters are not identifiably different from the existing ones, there is no benefit to 

inducing higher numbers of clusters. The number of possible clusters of alternatives considered 

would be indentified through empirical investigation. In any case, the choice of any alternative is 

based on principles of Random Utility Maximization (RUM) where the utility of a discrete 

choice alternative is represented by the weighted sum of variables relevant to the choice as well a 

random component.  

jjjjj
xVU   )(           (1) 

Here Uj is the utility of an alternative choice j, Vj is its systematic utility components, and εj is its 

random utility component. Vj is expressed as a linear-in-parameter function of variables x and 

corresponding coefficients β. The generalized extreme value (GEV) theorem (McFadden, 1978) 

forms the basis of the Generalized Logit (GenL) presented by Swait (2001). Considering the 

generalized extreme value distribution assumption for the random utility component, the 

corresponding generating function of the GenL model becomes: 
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Here, G is the generating function, yj refers to a binary variable indicating the choice of 

alternative j; µ is the root scale parameter, µc is the scale parameter of a particular choice set (c) 

and the summation over C indicates the summation over all possible choice sets. In this case, the 

alternative choice sets are composed of either a single alternative or set adjacent alternatives. For 
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each alternative departure time, the set of alternative that composes the multi-alternative choice 

set is composed of the alternative itself as well as the left adjacent and/or right adjacent 

alternative. So, the unconditional probability of choosing one alternative j, Pj is 

 




C

c

cjj
QcPP

1

|            (3) 

Here Pj|c is the conditional probability of alternative j in the choice set c and Qc is the choice 

node probability or probability of the choice set c. 
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Here Ic is inclusive value of a particular alternative choice set c.  
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Finally the conditional probability of any alternative j in a particular choice set c is 
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Here, j is the particular alternative and J is the total number of alternatives in the choice set c. In 

the case of a choice set with one alternative, the conditional probability is 1. This approach 

allows that a single alternative can be part of multiple choice sets. Hence the actual choice set 

formation is latent, where the final choice probability of any alternative is composed of 

probabilities of being part of multiple choice sets. Such a latent choice set approach better 

captures captivity to specific alternatives as well as correlation across the alternatives. This 

formulation is very much similar to the Paired Combinatorial Logit (PCL) model presented by 

Koppelman and Wen (2000). However, we further parameterize the scale parameters of the 

model, which accommodates systematic heteroskedasticity. 

 

Scale parameters representing correlation among the alternatives (choice set/nest scales) within a 

choice set as well as overall scale of the utility function of choosing discrete departure times 

(root scale) are crucial in properly capturing the choice behaviour. In terms of scale parameters, 

there are two types of scale parameters in this model formulation: root scale parameter (µ) and 

scale parameter of a particular choice set c (µc). For theoretical consistency with RUM, it is 

necessary that µc should be greater that µ (Swait 2001). Also, it should be maintained that all 

scale parameters must be positive. To ensure such conditions, we further parameterized the scale 

parameters as follows: 
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Here ∑γz represents a linear-in-parameter function of variables z and corresponding coefficients 

γ. Similarly, ∑λy represents a linear-in-parameter function of variables y and corresponding 

coefficients λ. Empirical estimation of the model requires identification restriction, which 

includes the normalization of the root scale parameter. Such scale parameterization ensures that 

the estimated model comply with basic assumptions of RUM and that the resulting model 



    

10 

 

become a heteroskedastic model. Hence the model proposed in this paper is a heteroskedastic 

generalized logit model (Het-GenL) or specifically a heteroskedastic paired combinatorial logit 

model. In general, the Het-GenL framework represents a decision process where an individual 

may select a time interval directly, or by comparing it to adjacent time intervals. This is 

representative of decision making behaviour in reality where an individual may choose their 

departure time out of all the possible times of day or they may narrow down the selection to a 

certain range and select a departure time within that portion of the day. The probability equations 

of the model are of closed form and hence can be estimated by using classical estimation 

techniques. Since the alternative choice sets are latent in nature, such a type of model requires 

full-information maximum likelihood estimation (Koppelman and Wen 2000). The scale 

parameterization allows model estimation by the unconstrained maximum likelihood estimation 

approach. This is unlike the PCL model specified by Koppelman and Wen requiring constrained 

maximum likelihood estimation techniques (please see page 84 of Koppelman and Wen, 2000). 

In this paper, the empirical models are estimated through the maximum likelihood estimation 

technique using codes written in GAUSS, which uses the gradient search algorithm, BFGS 

(Aptech, 2011). The next section presents a brief summary of data used for empirical 

investigation. 

 

4. Data Description 
 

The data used in this study was collected by the 2006 Transportation Tomorrow Survey (TTS), a 

household based travel demand survey conducted in the Greater Toronto (and Hamilton) Area 

every five years. (DMG, 2012) The survey provides detailed information on trips made on a 

typical weekday by all individuals in the selected households. Five percent of households in the 

GTHA are contacted by telephone and all trips made by residents eleven years of age or older on 

a specific weekday are recorded.  

 

To prepare the survey data for analysis and modelling, all trips reported in TTS were linked to 

the corresponding level of service attributes. Auto mode level-of-service attributes are generated 

by using EMME/2 traffic assignment model, which is developed and calibrated for the study area 

(INRO, 2011). 24- one-hour assignments are used to develop 24-hour level-of-service attribute 

tables for the auto mode. However, the transit assignment model was only available for peak 

period conditions. To expand the peak hour transit level-of-service attributes for all twenty-four 

hours of the day, the following principles are defined:  

 Wait times vary proportionally to the variation in headways over time,  

 Subway travel times do not vary throughout the day due to the designated right-of-way,  

 Bus/Streetcar transit zone-to-zone travel times vary similarly to auto travel times,  

 Walk times and fares are known to be constant through the day.  

 

Finally, information about home zone population density and median income was attached to 

each trip based on the individual’s home location. Trip duration and work duration were 

calculated according to reported departure time and estimated travel times. Kernel density plots 

are used to investigate the departure time choice distribution for each mode (Auto and Transit 

users) and to find the degree of granularity required to represent the departure time choices. For 

both travel modes, Kernel Density Bandwidths are investigated for different occupation groups.  
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TTS classifies occupation groups into 4 categories: general office/clerical, manufacturing, 

professional, and retails sales/services. Trends indicate that the work trips of general office 

workers and professionals tend to be contained within the conventional morning peak period 

while manufacturing workers and retail workers are more likely to travel to work outside of the 

morning peak. Smooth kernel density plots are used to identify proper discretization of the 

departure time distributions. From investigation, it is found that a 30-minute bandwidth is the 

minimum level of detail required for representing the variability in the departure time choice 

distribution. We also investigated the possibility of 15-minute intervals, but found that it results 

in a lack of observations for a significant number of alternative departure time options.  

 

The common assumption among the planning agencies in the study is that the peak period starts 

at 6 am and ends at 9 am (Miller, 2007). However, in our case, based on the observed 

distributions of departure times in the dataset, we classified the alternative departure times into 

the following seven categories: 

1. Before 6:30 am 

2. 6:30 to 7:59 am 

3. 8:00 to 8:29 am 

4. 8:30 to 8:59 am 

5. 9:00 am to 9:29 am 

6. 9:30 am to 10:00 am 

7. After 10:00 am 

The reason for clustering all alternative departure times into one category after 10:00 am is that 

the dataset contains very few home-based commuting trips departing after 10:00 am. Also, the 

observations with such departure times are too dispersed to consider 30 minute interval 

alternatives after 10:00 am.  

 

The dataset also includes individual and household specific socio-economic attributes, such as 

age, gender, occupation type, household vehicle ownership and household size, etc. These 

variables are used as explanatory variables in the empirical investigation. 

 

5. Empirical Models of Departure Time Choice 
 

Separate departure time choice models are estimated for two travel mode categories: auto and 

public transit. Different models were estimated for each mode because the trip attributes 

affecting departure time choice behaviour are believed to vary between mode categories. The 

departure time choice is represented by nine discrete time intervals spanning 24 hours of the day. 

For each travel mode, the departure time choice model involves alternative specific constants, 

coefficient variables defining systematic utility functions, coefficients of variables defining root 

scale parameters and coefficients of variables defining nest scale parameters. The empirical 

model for the auto mode is presented in Table 1 and the empirical model for transit users is 

presented in Table 2. The reported specifications are the best among all alternative specifications 

that were tested. We define the final specification based on the statistical significance of the 

parameters and overall goodness-of-fit measures (the rho-square value). The final specifications 

show all parameters to be highly significant with all t-statistic values greater than 2.0. The auto 

users’ departure time choice model has 76 statistically significant parameters and the transit 

choice model has 80 significant parameters. Estimation of such a large number of statistically 
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significant parameters indicates that the model formulation is robust in identifying influential 

variables for explaining specific components of choice model formulations.   

 

We found that only alternative specific constants, transportation level-of-service attributes and 

occupation type enter into the systematic utility function of alternative departure time choices for 

auto and transit users. Systematic utility components capture relative utilities of alternative 

departure choices and hence the transportation level-of-service attributes corresponding to 

alternative departure time segments play the major role. Commuters’ occupation type, sometimes 

imposes restrictions/flexibilities in departure time choice and so it influences the relative 

attractiveness of alternative departure time segments. However, individual commuter’s personal 

and socio-economic attributes may not have very direct influences on defining the attractiveness 

of alternative departure time segments. Hence, we found that all socio-economic attributes enter 

only into the scale parameter, which defines the absolute utility of total choice contexts 

(commuting departure time) and captures heterogeneity and heteroskedasticity in choice 

behaviour. We also found that some level of service attributes and work related attributes enter 

both into the systematic utility and scale parameter functions defining a highly non-linear and 

complicated relationship with departure time choice.  

 

5.1 Systematic Utility Function 
 

It is found that alternative specific constant values are very low in magnitude for both auto and 

transit users (the highest absolute value is 1.25 for the auto user’s departure time choice model 

and 2.74 for the transit users’ departure time choice model). Low alternative specific constant 

values are indicators of better model formulations that can accommodate variable effects 

accurately. However, the interpretation of alternative specific constants should be done very 

carefully as it captures the systematic utility components that are not explained by any 

explanatory variables used in the model. It seems that the positive utility of departing between 7 

am and 9 am or after 10 am is not fully explained by the variables in the model. Similarly, the 

positive utilities of departing after 7 am are not fully explained by the available variables. 

Interestingly, both auto and transit departure time choice models indicate that the systematic 

utility of the departure time during the off-peak period, specifically after 10 am, is the least 

explained by the available variables.  

 

In terms of level-of-service attributes, travel time and travel cost both enter into the systematic 

utility functions of the auto user’s departure time choice model. However, in the case of transit, 

since the study area has a flat fare system for transit, transit fare could not be included in the 

systematic utility components of the departure time choice. For auto users, the cost variable has a 

positive coefficient for all departure time choice alternatives except for the time interval after 10 

am. However, the in-vehicle travel time has a negative coefficient for all departure time choice 

options except for the 7:00 am to 7:29 am option. Intuitively, both in-vehicle time and cost 

coefficients should have negative coefficients. An apparently counter-intuitive sign can be 

explained with respect to the reference alternative. A possible explanation for the positive sign of 

the in-vehicle travel time coefficient between 7:00 am to 7:29 am in the auto user’s model is that 

this time slot may be preferable to the reference alternative (before 6:30 am), which is perceived 

as being too early in the morning, even when faced with increasing traffic congestion at later 

times. Similarly, commuters who prefer departing after 10 am will continue to choose that time 

slot rather than departing very early (before 6:30 am) even in the case of increasing travel costs. 
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In general, it is clear that higher in-vehicle travel time and travel cost influences auto users to 

choose earlier departure times. Similarly, transit users with longer travel times tend to choose 

earlier departure times. 

 

Transit waiting time, which is a function of transit service frequency as well as transportation 

system performance (schedule delay) enters into the model of transit user’s departure time 

choices with a negative sign for all alternatives. This indicates that a higher waiting time always 

increases disutility. Interestingly, the disutility increases until 9 am and then gradually reduces. 

Typically, in the study area, transit peak period service is defined as being between 7 am to 9 am. 

It seems that higher waiting times encourage departures either earlier than 8:30 am to 8:59 am or 

later than 9:00 am. 

 

For work duration, both auto user’s and transit user’s departure time choice models demonstrate 

the effect where longer work durations induce a disincentive to travel later in the morning. 

However, unlike auto users, the disutility of alternative departure time slots for increasing work 

duration increases continuously with the time-of-day. In  terms of the magnitude of the 

coeffcient, auto users are less sensitive to work duration than transit users for the departure time 

slots after 9 am. This can be explained by the fact that transit service becomes less frequent after 

the peak work travel period. Thus, transit users with long work durations are more likely to 

depart earlier in the morning, both because they are hoping to begin and end work early and 

because they do not want to risk tardiness due to infrequent service. Level-of-service attributes 

are found to have an effect on departure time choice behaviour.  

 

In the public transit model, the parameter estimates for the downtown destination variable are all 

positive, meaning that a downtown destination encourages transit use, and has a positive effect 

on the utility of all departure time choices. For the purposes of this study, downtown Toronto is 

defined as the area bounded by Front Street, Bloor Street, Yonge Street, and Spadina Avenue. 

The positive effect on departure time choice utility is highest close to 9 in the morning, because 

morning peak transit service is especially frequent on routes leading to the city centre.  

As expected, the effect of downtown destinations on the utility of a departure time choice 

alternative is much higher for transit trips than auto trips, due to the radial nature of the transit 

system. Transit trips that end downtown experience a positive utility for peak period travel while 

auto trips experience a disutility to peak travel toward downtown because of increasign traffic 

congestion. 

 

Occupation type variables are shown to influence departure time choices: office and professional 

workers depart in the morning peak to meet conventional work start times while manufacturing 

workers travel outside of the peak due to work schedules. The effect of job type on the utility of 

departure time choices differs between travel modes. Office and professional job types have the 

largest effect on departure time choice among auto users. Among transit users, there is a large 

disutility attached to the manufacturing job type, at any time of day. By contrast, auto users, 

those who are most likely to have a manufacturing job, experience only a small disutility for 

most of the morning. Manufacturing work is often located in suburban areas and demonstrates a 

lower utility in transit departure time choices. 
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5.2 Scale Parameter (Exponential Function) 
 

The root scale parameter defines the common scale parameter of individual alternatives as well 

as the alternative nests. It defines the overall scale of random utility of choosing discrete 

departure time alternatives. The higher the value of the root scale parameter, the more stable the 

choices are. It also captures the heteroskedasticity and heterogeneity in departure time choices. 

We specified the root scale parameter as an exponential function to ensure positive values. In the 

exponential function, any positive coefficient increases the root scale parameter value and any 

negative coefficient decreases the scale parameter value. In general, increasing the root scale 

indicates that the choice model prediction should be more certain and vice versa (Swait and 

Erdem, 2007- Figure 1). Swait (2003-Figure 3) presents a schematic diagram to explain the 

nonlinear effects of root scale and nest scale parameter in individual choice probabilities. In 

general, the higher values of nest scale parameter indicate higher correlation between the shared 

alternatives within the nest. We specified nest scale parameter as additive exponential functions 

of root scale and an additional exponential function. This ensures that nest scale is higher than 

the root scale. So, for the additional exponential component, a positive coefficient indicates 

increasing correlation between the alternatives with the nest and vice versa.  

 

Figure 2 presents the kernel density plots of the estimated root and nest scale parameter for the 

auto user’s departure time choice model and Figure 3 presents the kernel density plots for the 

transit users’ departure time choice model. The auto root scale parameter has multiple peaks and 

the transit root scale parameter has two distinct peaks. Having multiple peaks in the kernel 

density plot indicates the existence of multiple distinct classes of commuters. As opposed to the 

fixed root scale parameter, the parameterization of root scale clearly proves the ability of the 

proposed Het-GenL model to capture a wide range of heterogeneity and heteroskedasticity 

present in the commuters of the study area. Also, having a higher number of peaks in the root 

scale parameters of auto users as compared to that of transit users indicates the existence of 

higher numbers of distinct auto user classes than the number of transit users’ classes. Comparing 

the modal values of the root scale peak, it is clear that auto users’ classes are very close in terms 

of modal root scale values. However, in case of transit users, two distinct classes have 

distinctively different modal root scale parameter values. The class with the lower root scale 

modal value refers to the choice users compared to the class with higher modal value of root 

scale parameter who are more captive users. The choice users have a lower root scale and hence 

their choice behaviour is less predictive than the captive users. It is clear that the Het-GenL 

model is capable of capturing such behavioural paradigms in the choice model within a closed 

form model formulation. 

 

Interestingly, contrary to its root scale parameter distribution, the nest scale parameters of the 

auto users’ departure time choice model shows a unique single-peak distributional pattern. 

However, the nest scale parameters of the transit users’ departure time choice model show a 

similar double-peak distributional pattern to its root scale parameter. The correlation between 

adjacent time slots increases from early morning 9 am and then decreases gradually. This exactly 

follows the departure time distribution of commuting trips. The frequency of departure increases 

from early morning until the peak of the peak period (around 9 am) and then gradually decreases. 

So, it empirically validates the capability of Het-GenL model to accommodate artificial 

boundary aggregation errors induced by such discretization. In the case of the transit users’ 

departure time choice model, bimodal distributions of the nest scale parameter are stable across 
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the time-of-day. It indicates the fact that transit users’ departure time choices are constrained by 

transit schedules. So, the choice users are more discrete about alternative 30-minute time slots 

than the captive users and hence have lower modal values of the nest scale parameter. However, 

both choice and captive users show a generally uniform perception of the correlation between 

adjacent departure time slots throughout the day. A possible explanation is that such a perception 

is basically defined by the transit service quality (the posted transit service schedules), which do 

not change day by day.  

 

In terms of covariates, commuter’s personal attributes as well as transportation service attributes 

are found to be highly significant in influencing the root scale parameter. The root scale 

parameter basically explains the baseline heterogeneity across the population. A high value of 

the scale parameter indicates more stable choice (more predictive). An interesting finding is that 

variables used to parameterize root scale have completely opposite effects in the auto and transit 

departure time choice models. Root scale parameterization captures the basic and distinctive 

characteristics of auto and transit users in the study area. Age plays a significant role in defining 

the root scale parameter of both auto and transit departure time choices with completely opposite 

effects. In the case of auto departure time choices, commuters younger than 45 years old have 

more predictive choice patterns than the commuters aged more than 45 years.  

 

However, in the case of transit departure time choices, commuters younger than 45 years old 

have less predictive choice patterns than those older than 45. This is a very interesting finding 

and it refers to the fact that younger people who drive to work with longer work hours and 

defined schedules have more stable choice patters. Contrary to this, commuters older than 45 

years who drive to work may not work longer hours and may have more flexible work schedules 

that allow for less stable departure time choices. The opposite is true for transit users. It is 

evident that males have more stable departure time choice patterns than females for auto 

departure time choices. However, a full time job status increases the root scale parameter of auto 

departure time choices, but decreases the same for transit departure time choices.  

 

Travel cost enters into both the systematic utility and root scale parameter of the auto departure 

time choice model, but it enters only into the root scale parameter of the transit departure time 

choice model. It seems that higher travel cost per unit distance decreases the root scale parameter 

of auto departure time choices, but it increases the root scale parameter of transit departure time 

choice. Compared to transit users, auto users can have more flexibility in choosing departure 

times. So, an increasing unit cost may influence the auto users to choose a different departure 

time choice to reduce the total travel cost. However, departure time choices of the transit users 

are more defined by transit services available in the study area. While investigating the scale 

parameter distribution patterns, we also found that a significant portion of transit users are 

captive. A possible explanation would be that an increase in fare will drive the choice transit 

users away and thereby increase the share of captive users. Departure time choice patterns of the 

captive users will definitely be more stable and hence an increasing fare indicates an increase in 

root scale for the transit departure time choice model.  

 

In-vehicle travel time enters into both the systematic utility and root scale parameter of the auto 

departure time choice model. In the case of the transit departure time choice model, in-vehicle 

travel time enters into systematic utility function, but the total travel time (in-vehicle + waiting + 

walking) enters into the root scale parameters. Travel time has opposite effects in auto and transit 
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departure time choice models. It is clear that longer travel time reduces the root scale parameter 

of auto departure time choice model, but it increases the root scale of transit departure time 

choice. In the case of auto departure time choices, increasing travel time influences choosing 

alternative departure time options and hence the choice pattern becomes less stable. On the other 

hand, a significant portion of transit users are captive and increasing travel time may increase 

this portion even higher. Captive users will have little option to improve the situation by 

changing departure times in the face of increasing travel time.  

 

The location of a trip origin and destination within downtown Toronto increase the root scale 

parameter of the transit departure time choice model, but they reduce it for the auto departure 

time choice model. Downtown Toronto is congested for auto drivers but well served by transit. 

This is true for both in-bound and out-bound traffic in Toronto. So, the explanation can be that 

auto users in this case would try to avoid congestion and hence would have a less stable 

departure time choice pattern. On the other hand, transit users in this case have highly available 

transit services and show very stable departure time choice patters. The logarithm of distance 

significantly explains the additional nest scale parameter component of auto departure time 

choices and the total access time (waiting time + walking time) defines the nest scale parameters 

of auto departure time choices. A higher value of a nest scale parameter refers to a higher 

perception of similarity between the corresponding adjacent departure time slots. Longer 

commuting distance makes the time segments within 7:00 am to 9:00 am appear more similar 

than other time slots to auto users. Increasing transit access time increases the perception of 

similarities between adjacent time slots after 7:30 am. 

 

A comparison of these results with previous departure time choice studies indicates similarities. 

For example, in one of the earliest studies on departure time choice modelling, Small (1982) 

shows that in San Francisco workers with flexible work schedules are likely to travel to work 

later in the morning. Comparing this to the departure time choices of the GTHA commuters 

shows that those with shorter work duration – potentially a characteristic comparable to flexible 

work hours – also tend to leave later in the morning. In another study of San Francisco morning 

commuter departure time choice, Abkowitz (1981) reveals that transit users are not likely to 

travel early in the morning due to infrequent off-peak transit service. The results of this work 

support the fact that transit is undesirable before the peak service begins; the alternative specific 

constant parameter for transit departure time choice has a negative value before 7 am in the 

morning. With regards to job type, the results of this study also show that professional workers 

prefer to travel to work in the middle of the morning peak period as compared to very early in 

the morning.  

 

In a recent study on commuting departure time choice modelling in New York, Chu (2009) finds 

that work schedules strongly influence work departure time choices. Specifically, Chu’s finding 

that those with shorter work duration depart later for work has been supported by the results of 

this work. Similar to Chu, these results find that drivers are more strongly motivated by travel 

time than by cost because neither New York nor Toronto currently use variable road pricing 

strategies. De Jong et al. (2003) also found that departure time choice is affected by travel time 

and cost, which are consistent with the findings of this investigation. Bajwa et al. (2006) found 

that models that recognize that alternate choices are correlated perform better than those that do 

not; this has been supported by a large number of statistically significant parameters defining the 
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root and nest scale parameters of the Het-GenL model presented in this paper. It is also clear that 

the same variable may have influence on multiple components of choice model formulation.  

 

For example, it is clear from this investigation that, travel cost and travel time influences the both 

systematic utility and root scale parameter of the auto user’s departure time choice model. In the 

case of transit users, travel cost seems to influence only the root scale parameter; in-vehicle 

travel seems to influence both systematic utility and root scale parameter and transit access time 

seems to influence both the root scale and nest scale parameter of the departure time choice 

model. The proposed econometric model formulation is capable of capturing such complicated 

relationships of different variables with departure time choices. Implications of such complicated 

relationships may have differential effects of transportation policies influencing different 

attributes of transportation system performance. For example, Figure 4 presents the sensitivity of 

travel cost and in-vehicle travel time (IVTT) changes with respect to departure time choices of 

auto users. It is clear that travel cost (fuel cost and parking) and in-vehicle travel time may have 

completely different effects if these are changed independently. In both cases, the sensitivity of 

the Het-GenL model is compared against a Gen-L model with constant scale parameters. It is 

clear that overlooking scale heterogeneity would over-estimate cost effects for early (before 7:30 

am) departure time choice, but under-estimate cost effects on late (after 7:30) departure time 

choice. However, scale heterogeneity seems to have little effects on in-vehicle travel time 

sensitivity.     

 

Conclusion 
 

Departure time choice models for commuting are an important analysis tool for investigating 

urban transportation policies. Appropriate modelling structures for departure time choices can be 

a very useful tool for investigating travel demand management policies such as congestion 

pricing, variable transit fare etc. Different types of departure time choice models are presented in 

the literature and the application of discrete choice models is one of the dominant practices. 

Applications of discrete choice models for departure time choice include the multinomial logit 

model, ordered probability model and mixed logit modelling approach. Applications of 

multinomial logit models have a serious issue in terms of violating the IIA assumption, but 

applications of the mixed logit type approach overcome this. However, applications of mixed 

logit type models leave the likelihood function in a non-closed form so that they cannot be 

estimated using classical estimation techniques. Researchers have also investigated the 

application of ordered or generalized extreme value models. While such models can 

accommodate a wide variety of substitution patterns, heterogeneity and heteroskedasticity, the 

estimation is always a challenge because of restrictions necessary on different parameter values.  

 

To complement to this trend of discrete choice modelling, this paper presents a closed form 

generalized extreme value model with overlapping choice set formations. The structure of the 

model falls into the general category of generalized logit (GenL) models or paired combinatorial 

logit (PCL) models. However, the proposed model also has parameterized scales, which captures 

preference heterogeneity and heteroskedasticity within a closed form model formulation. Two 

types of scale parameters are induced: the root scale parameter capturing heterogeneity and 

heteroskedasticity in choice behaviour and the nest scale parameter capturing substitution 

patterns of alternative departure time choices that are adjacent to each other. Such an approach 

can overcome the boundary errors induced by time discretization for departure time choice 
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modelling. The proposed modelling structure is referred to as a heteroskedastic generalized logit 

(Het-GenL) model.   

 

The paper presents empirical applications of the Het-GenL model using TTS data collected in the 

GTHA in 2006. Separate models are estimated for auto and transit users. Empirical models prove 

the capability of the proposed econometric model in capturing differential effects of different 

explanatory variables of commuting departure time choice. It is clear that socio-economic and 

personal attributes of the commuters better explain root scale parameter than the systematic 

utility of alternative departure time choices. Only transportation level of service attributes, work 

duration and occupation specific attributes explain the systematic utility functions of both auto 

and transit departure time choice.  

 

However, in the case of the scale parameter, it is clear that socio-economic as well as 

transportation level-of-service attributes play major roles. Empirical distributions of root and nest 

scale parameters clearly identify the presence of multiple classes of commuters who use private 

automobiles for commuting. However, in the case of transit, two distinct categories are obvious: 

choice users and captive users. The proposed model can implicitly capture the presence of 

multiple classes of commuters within users of the same mode though root scale parameterization. 

The presence of such a latent class structure within the commuter groups defines the sensitivities 

of different variables used to specify the utility functions. 

 

The same variables are found to have opposite effects in auto and transit user’s departure time 

choices. It is evident that transit departure time choices are defined by the patterns of transit 

services available in the study area. For example, the downtown Toronto has the best transit 

service in the region and most congested auto network. Hence, commuting trips originating in or 

destined to downtown Toronto by transit are more stable in departure time choice patterns than 

the auto trip counterparts. Similarly, increasing peak period traffic congestion resulting in 

increased travel time and cost may influence auto users to change their departure time choices. 

However, increasing transit travel time and fare may force the choice transit users to change 

modes and increase the proportion of captive transit users. In such a case, increasing travel time 

and cost would cause even more stable departure time choice patters of the existing transit users.  

 

A commuter’s age is found to be very significant in defining the root scale parameter of auto and 

transit departure time choices, but with opposite effects. Empirical models reveal that commuters 

younger than 45 years have more stable auto departure time choice patterns, but less stable 

transit departure time choice patterns. Gender is not found as a significant variable in influencing 

transit departure time choice patters, but it is found that male commuters have more stable auto 

departure time choice patterns. The proposed model is also validated against a simpler model 

with fixed scale parameters. It is found that the proposed scale parameterization provides a much 

better explanation of choice behaviour. It is clear that a constant scale assumption gives under-

estimation of the elasticity of key variables such as travel cost. 

 

Although the departure time choice model can explain many behavioural details, the explanation 

of some key findings remains arbitrary. For example, distribution patterns of the transit root scale 

parameter need to be further investigated. It is understood that a joint model of mode and 

departure time choice would be the next stage of this investigation. While joint mode and 

departure time choice models are presented in literature in the form of a joint discrete-continuous 
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model, we feel the need to develop a joint discrete choice modelling framework for mode and 

departure time choices. The complexity of such a joint discrete choice model, in terms of model 

parameter estimation challenges is perceivable, but it is believed to be worth considering as the 

next stage of this research. Also, considering access station choice for transit jointly with mode 

and departure time choice would be considered for future investigation. 
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Table 1: Departure Time Model for Auto Mode 

Mean loglikelihood of full model : -1.986

Mean loglikelihood of null model : -2.251

Rho-Square Value: 0.12

Systematic Utility Function of Departure Time Choice

Variable Parameter t-Stat Parameter t-Stat

Alternative Specific Constant Work Duration

before 6:30 am  --- --- before 6:30 am --- ---

6:30am-6:59am  -0.4842 -231.975 6:30am-6:59am -0.0493 -273.362

7:00am-7:29am  -0.2667 -128.066 7:00am-7:29am -0.065 -373.122

7:30am-7:59am  0.1326 69.193 7:30am-7:59am -0.0941 -478.551

8:00-8:29  0.3239 183.87 8:00-8:29 -0.1187 -533.37

8:30am-8:59am  0.0709 35.655 8:30am-8:59am -0.1227 -527.116

9:00am-9:29am  -0.0345 -16.516 9:00am-9:29am -0.1485 -501.491

9:30am-9:59am  -0.4116 -160.724 9:30am-9:59am -0.1448 -445.523

10am or later 1.2562 455.032 10am or later -0.1353 -471.727

Total Cost Destination of the Trips: Downtown Toronto

before 6:30 am --- --- before 6:30 am --- ---

6:30am-6:59am -0.012 -70.403 6:30am-6:59am -0.0448 -15.772

7:00am-7:29am -0.0237 -150.401 7:00am-7:29am -0.0869 -37.383

7:30am-7:59am -0.0263 -161.282 7:30am-7:59am -0.1553 -68.469

8:00-8:29 -0.0237 -136.465 8:00-8:29 -0.0949 -41.756

8:30am-8:59am -0.0373 -124.239 8:30am-8:59am -0.0774 -28.246

9:00am-9:29am -0.0079 -27.672 9:00am-9:29am 0.1344 39.465

9:30am-9:59am -0.014 -34.231 9:30am-9:59am 0.2243 54.078

10am or later 0.0039 41.006 10am or later 0.0311 18.96

In-Vehicle Travel Time Occupation Cetegory: General office

before 6:30 am --- --- before 6:30 am --- ---

6:30am-6:59am -0.009 -106.432 6:30am-6:59am 0.7167 291.14

7:00am-7:29am 0.0029 64.477 7:00am-7:29am 1.0016 448.792

7:30am-7:59am -0.0067 -128.341 7:30am-7:59am 1.2127 532.243

8:00-8:29 -0.0132 -226.681 8:00-8:29 1.3142 561.252

8:30am-8:59am -0.0178 -274.622 8:30am-8:59am 1.3012 510.028

9:00am-9:29am -0.0284 -210.618 9:00am-9:29am 0.9245 361.217

9:30am-9:59am -0.0316 -265.883 9:30am-9:59am 0.68 219.6

10am or later -0.0176 -382.783 10am or later --- ---
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Table 1 (continued): Departure Time Model for Auto Mode  
 

Systematic Utility Function of Departure Time Choice (continued)

Parameter t-Stat

Occupation Cetegory: Manufacturing

before 6:30 am --- ---

6:30am-6:59am 0.5805 303.417

7:00am-7:29am 0.2429 164.063

7:30am-7:59am -0.0241 -19.739

8:00-8:29 --- ---

8:30am-8:59am --- ---

9:00am-9:29am --- ---

9:30am-9:59am --- --- Root Scale: Exponential Function 

10am or later -0.0815 -90.338 Parameter t-Stat

Occupation Cetegory: Professional Gender: male 0.0509 72.669

before 6:30 am --- --- Age: less than 25 years old 0.0412 37.921

6:30am-6:59am 0.7523 331.822 Age: 25 to 35 years old 0.0204 22.885

7:00am-7:29am 0.9642 464.508 Age: 35 to 45 years old 0.0098 12.476

7:30am-7:59am 1.1848 540.114 Job Status: full time 0.117 126.757

8:00-8:29 1.2603 567.566 Total Cost/Total Distance -0.2111 -89.327

8:30am-8:59am 1.2323 528.091 In-Vehicle Travel Time/Total Distance -0.0098 -13.584

9:00am-9:29am 0.9832 448.511 Trip Origin: Downtown Toronto -0.0989 -40.302

9:30am-9:59am 0.7619 310.322 Trip Destination: Downtown Toronto -0.0663 -35.007

10am or later 0.0893 83.381

Additional Exponential Function to Root Sale for alternative Nests

Parameter t-Stat

Logarithm of Distance between Origin and Destination

before 6:30 am & 6:30am-6:59am -0.9456 -34.694

6:30am-6:59am & 7:00am-7:29am -0.1974 -13.491

7:00am-7:29am & 7:30am-7:59am 0.2184 32.098

7:30am-7:59am & 8:00am -8:29am 0.3667 46.366

8:00am -8:29am & 8:30am-8:59am 0.6084 88.375

8:30am-8:59am & 9:00am-9:29am -0.1724 -11.099

9:00am-9:29am & 9:30am-9:59am -0.4832 -107.315

9:30am-9:59am & 10am or later 0.1841 218.176  
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Table 2: Departure Time Model for Transit Mode 

Mean loglikelihood of full model : -1.915

Mean loglikelihood of null model : -2.229

Rho-Square Value: 0.14

Systematic Utility Function of Departure Time Choice

Variable Parameter t-Stat Parameter t-Stat

Alternative Specific Constant Work Duration

before 6:30 am  --- --- before 6:30 am --- ---

6:30am-6:59am  -0.6082 -136.483 6:30am-6:59am -0.0327 -90.974

7:00am-7:29am  0.3151 81.25 7:00am-7:29am -0.0531 -163.86

7:30am-7:59am  0.7441 180.408 7:30am-7:59am -0.0905 -254.97

8:00-8:29  1.5259 331.584 8:00-8:29 -0.1192 -317.71

8:30am-8:59am  1.1417 221.201 8:30am-8:59am -0.1294 -287.4

9:00am-9:29am  0.9162 162.488 9:00am-9:29am -0.1828 -338.49

9:30am-9:59am  0.0522 4.703 9:30am-9:59am -0.2118 -250.12

10am or later 2.7472 282.165 10am or later -0.2664 -286.9

Transit In-Vehcile Travel Time Destination of the Trips: Downtown Toronto

before 6:30 am --- --- before 6:30 am --- ---

6:30am-6:59am 0.0065 76.669 6:30am-6:59am 0.3014 90.644

7:00am-7:29am 0.0069 90.395 7:00am-7:29am 0.2417 82.968

7:30am-7:59am -0.0006 -6.997 7:30am-7:59am 0.2559 84.019

8:00-8:29 -0.0068 -81.13 8:00-8:29 0.1687 56.57

8:30am-8:59am -0.0176 -156.695 8:30am-8:59am 0.3192 88.349

9:00am-9:29am -0.0204 -166.71 9:00am-9:29am 0.4483 113.19

9:30am-9:59am -0.0261 -145.16 9:30am-9:59am 0.6055 101.07

10am or later -0.0171 -167.948 10am or later -0.1123 -34.457

Transit Waiting Time Occupation Cetegory: General office

before 6:30 am --- --- before 6:30 am --- ---

6:30am-6:59am -0.0385 -151.853 6:30am-6:59am 0.5238 121.4

7:00am-7:29am -0.0842 -308.639 7:00am-7:29am 0.595 152.27

7:30am-7:59am -0.1004 -325.28 7:30am-7:59am 0.6295 157.4

8:00-8:29 -0.1579 -389.037 8:00-8:29 0.4962 125.62

8:30am-8:59am -0.1823 -307.199 8:30am-8:59am 0.4296 91.337

9:00am-9:29am -0.0672 -141.258 9:00am-9:29am -0.1723 -32.532

9:30am-9:59am -0.0475 -79.048 9:30am-9:59am -0.2055 -26.857

10am or later -0.0373 -145.228 10am or later -0.7231 -143.09  
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Table 2 (Continued): Departure Time Model for Transit Mode 

 

Systematic Utility Function of Departure Time Choice (Continued)

Parameter t-Stat

Occupation Cetegory: Manufacturing

before 6:30 am --- ---

6:30am-6:59am -0.393 -77.431

7:00am-7:29am -0.7236 -149.908

7:30am-7:59am -1.4344 -230.077

8:00-8:29 -1.5274 -255.403

8:30am-8:59am -1.7406 -213.615

9:00am-9:29am -2.0077 -219.459

9:30am-9:59am -1.7822 -138.546

10am or later -1.3189 -212.975

Occupation Cetegory: Professional Root Scale: Exponential Function 

before 6:30 am --- --- Parametert-Stat

6:30am-6:59am 0.4942 130.475 Age: less than 25 years old -0.1219 -80.971

7:00am-7:29am 0.5385 157.404 Age: 25 to 35 years old -0.0235 -16.925

7:30am-7:59am 0.6789 191.416 Age: 35 to 45 years old -0.0348 -24.912

8:00-8:29 0.5918 170.366 Fare/Total Distance 0.0051 4.62

8:30am-8:59am 0.5499 135.212 Total Travel Time / Total Distance0.0008 16.711

9:00am-9:29am 0.1135 26.517 Trip Origin: Downtown Toronto 0.0437 24.951

9:30am-9:59am 0.1183 20.012 Trip Destination: Downtown Toronto0.1674 112.587

10am or later -0.4558 -117.983 Job Status: full time -0.0365 -28.526

Additional Exponential Function to Root Sale for alternative Nests

Parametert-Stat

Transit Access Time: Waiting Time + Walking Time

before 6:30 am    & 6:30am-6:59am -1.2063 -2.211

6:30am-6:59am   & 7:00am-7:29am -1.2789 -2.485

7:00am-7:29am   & 7:30am-7:59am -1.0388 -2.58

7:30am-7:59am   & 8:00-8:29 -0.1071 -17.665

8:00am -8:29am  & 8:30am-8:59am -0.0684 -15.707

8:30am-8:59am  & 9:00am-9:29am -0.0567 -11.783

9:00am-9:29am  & 9:30am-9:59am -0.0391 -25.77

9:30am-9:59am  & 10am or later -0.0623 -33.951  
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Figure 2: Kernel Density Plots of Root and Nest scale Parameters for Auto User’s Departure Time Choice 
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Figure 3: Kernel Density Plots of Root and Nest scale Parameters for Transit User’s Departure Time Choice 
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Figure 4: Effects of Root Scale Parameterization on Auto User’s Departure Time Choice Model Sensitivity 

 


