

Greater Toronto Area CORDON COUNT PROGRAM TRANSPORTATION TRENDS 1991 - 2006 Technical Report



| 1.0 | INTRODUCTION                               | 1    |
|-----|--------------------------------------------|------|
| 1.1 | Purpose of this Report                     | 1    |
| 1.2 | BACKGROUND                                 |      |
| 1.3 | What is the Cordon Count Program?          |      |
| 1.4 | LOGISTICS OF COLLECTING CORDON COUNT DATA  | 1    |
| 1.5 | DATA STORAGE SYSTEM                        | 2    |
| 1.6 | ORGANIZATION OF THIS REPORT                | 2    |
| 2.0 | OVERALL TRENDS                             | 3    |
| 2.1 | Focus                                      | 3    |
| 2.2 | SUMMARY OF TRENDS                          |      |
| 2.  | 2.1 Total Count Period                     | 3    |
| 2.  | 2.2 Morning Peak Period                    |      |
| 2.  | 2.3 Afternoon Peak Period                  | 4    |
| 2.3 | DEMOGRAPHIC TRENDS AND ISSUES              | 5    |
| 3.0 | MODE OF TRANSPORTATION                     | 8    |
| 3.1 | Focus                                      | 8    |
| 3.2 | SUMMARY OF TRENDS                          |      |
|     | 2.1 Auto                                   |      |
| 3.  | 2.2 GO Rail                                |      |
| 3.  | 2.3 GO Bus                                 | 8    |
| 3.  | 2.4 Other Transit                          | 9    |
| 3.  | 2.5 Proportion of Person Crossings by Mode | 9    |
| 3.  | 2.6 Growth in Crossings by Mode            | 9    |
| 3.3 | CONCLUSIONS                                | 9    |
| 4.0 | TRANSIT                                    | . 11 |
| 4.1 | Focus                                      | .11  |
| 4.2 | SUMMARY OF TRENDS                          | .11  |
| 4.  | 2.1 GO Rail                                | .11  |
| 4.  | 2.2 GO Bus                                 | .11  |
| 4.  | 2.3 Other Transit                          | .11  |
| 4.  | 2.4 Proportion of Total Transit Crossings  | .11  |
| 4.3 | CONCLUSIONS                                | .12  |
| 5.0 | COMMERCIAL TRAFFIC                         | . 14 |
| 5.1 | Focus                                      | .14  |
| 5.2 | SUMMARY OF TRENDS                          | .14  |
|     |                                            |      |



# GTA Cordon Count Program - Transportation Trends 1991-2006

| -    | 5.2.1 Total Count Period                            |    |
|------|-----------------------------------------------------|----|
|      | 5.2.2 Combined Peak Period Traffic                  | 14 |
| 5.3  | CONCLUSION                                          |    |
| 6.0  | USE OF MAJOR ROADS AND TRANSIT FACILITIES           |    |
| 6.1  | Focus                                               |    |
| 6.2  | SUMMARY OF TRENDS                                   |    |
| (    | 5.2.1 Morning Peak Period                           |    |
| 6.3  | Conclusions                                         |    |
| 7.0  | PEAKING CHARACTERISTICS                             |    |
| 7.1  | Focus                                               |    |
| 7.2  | SUMMARY OF TRENDS                                   |    |
|      | 7.2.1 Morning Peak Period                           |    |
|      | 7.2.2 Afternoon Peak Period                         |    |
|      | 7.2.3 Overall Peak Period                           |    |
|      | 7.2.4 Peak Period Variation                         |    |
| 7.3  | Conclusions                                         |    |
| 8.0  | AUTO OCCUPANCY AND HIGH-OCCUPANCY VEHICLE LANES     |    |
| 8.1  | Focus                                               |    |
| 8.2  | SUMMARY OF TRENDS                                   |    |
| d    | 8.2.1 Morning Peak Period Auto Occupancy            |    |
| d    | 8.2.2 Morning Peak Period High Occupancy Vehicles   |    |
| d    | 8.2.3 Afternoon Peak Period Auto Occupancy          |    |
| ć    | 8.2.4 Afternoon Peak Period High Occupancy Vehicles |    |
| 8.3  | Conclusions                                         |    |
| 9.0  | SCHOOL BUS VOLUMES AND OCCUPANCY                    |    |
| 9.1  | Focus                                               |    |
| 9.2  | SUMMARY OF TRENDS                                   |    |
| 9    | 9.2.1 Morning Peak Period                           |    |
|      | 0.2.2 Afternoon Peak Period                         |    |
| 9.3  | Conclusions                                         |    |
| 10.0 | REVERSE AND CROSS COMMUTING                         |    |
| 10.  | 1 Focus                                             |    |
| 10.  | 2 SUMMARY OF TRENDS                                 |    |
|      | 10.2.1 Morning Peak Period                          |    |
|      | 10.2.2 Afternoon Peak Period                        |    |
| 10.  | 3 CONCLUSIONS                                       |    |
| 11.0 | METHODOLOGY ISSUES                                  |    |



| 11.1     | DATA COLLECTION AND SUMMARY   | .29 |
|----------|-------------------------------|-----|
| 11.2     | DATA STORAGE                  | 30  |
|          | ARY                           |     |
| GLUSSARY |                               |     |
| Appendix | x A - Peak Period Definitions |     |

Appendix B - Screenline Definitions

Appendix C - Total Count Period Peak Direction



LIST OF FIGURES

## After Page

Page iv

| FIGURE 1.1  | SCREENLINES INCLUDED IN THE ANALYSIS                                                                                                | 2  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|----|
| FIGURE 1.2  | SCREENLINE PEAK DIRECTIONS OF TRAVEL                                                                                                | 2  |
| FIGURE 2.1  | CHANGE IN NUMBER OF PERSON CROSSINGS (PEAK DIRECTION) - MORNING AND<br>AFTERNOON PEAK PERIODS (1991 TO 2006)                        | 7  |
| FIGURE 2.2  | CHANGE IN NUMBER OF VEHICLE CROSSINGS (PEAK DIRECTION) - MORNING AND AFTERNOON PEAK PERIODS (1991 TO 2006)                          | 7  |
| FIGURE 2.3  | CHANGE IN HBW TRIPS BY ORIGIN, DESTINATION, AND REMAINING WITHIN EACH REGION                                                        | 7  |
| FIGURE 3.1  | GRAPHS OF MODAL SHARES OF PERSON TRIPS (BOTH DIRECTIONS) – MORNING PEAK<br>PERIOD (1991 TO 2006)                                    |    |
| FIGURE 4.1  | CHANGE IN GO RAIL PASSENGER (PEAK DIRECTION) - MORNING AND AFTERNOON<br>PEAK PERIODS (1991 TO 2006)                                 | 13 |
| FIGURE 4.2  | CHANGE IN GO BUS PASSENGER (PEAK DIRECTION) - MORNING AND AFTERNOON<br>PEAK PERIODS (1991 TO 2006)                                  | 13 |
| FIGURE 5.1  | TIME OF DAY PROFILE FOR COMMERCIAL VEHICLES CROSSING SCREENLINES –<br>TOTAL COUNT PERIOD (1991 TO 2006)                             | 16 |
| FIGURE 6.1  | HIGHWAY AND TRANSIT INFRASTRUCTURE USAGE - MORNING PEAK PERIOD (PEAK DIRECTION - 2006)                                              | 17 |
| FIGURE 7.1  | VEHICLE PEAKING CHARACTERISTICS BY TIME OF DAY – TOTAL COUNT PERIOD<br>(1991 TO 2006)                                               | 20 |
| FIGURE 7.2  | PEAK HOUR SPREADING - RATIO OF TRAVEL DURING PEAK HOUR TO 3-HOUR PEAK<br>PERIOD - MORNING AND AFTERNOON PEAK PERIODS (1991 TO 2006) | 20 |
| FIGURE 8.1  | AVERAGE AUTO OCCUPANCY (PEAK DIRECTION) - MORNING AND AFTERNOON PEAK<br>PERIODS (1991 TO 2006)                                      |    |
| FIGURE 8.2  | CHANGE IN NUMBER OF HOV 2+ VEHICLES (PEAK DIRECTION) - MORNING AND<br>AFTERNOON PEAK PERIODS (1991 TO 2006)                         | 24 |
| FIGURE 8.3  | CHANGE IN NUMBER OF HOV 3+ VEHICLES (PEAK DIRECTION) - MORNING AND<br>AFTERNOON PEAK PERIODS (1991 TO 2006)                         | 24 |
| FIGURE 10.1 | REVERSE COMMUTING – RATIO OF OFF-PEAK TO PEAK DIRECTION VEHICLE<br>CROSSINGS (1991 TO 2006)                                         | 28 |



# **1.0 INTRODUCTION**

#### 1.1 Purpose of this Report

This report presents a comprehensive analysis that addresses the emerging trends and travel patterns for the entire Greater Toronto Area (GTA). The analysis is based on the available 1991 to 2006 GTA Cordon Count data. The focus is primarily on inter-regional transportation issues and trends.

This report also aims to inform government agencies, decision-makers, academics, the transportation community, and the public of the value in using the Cordon Count database for decision making and strategic planning on policy formation and investments in infrastructure.

In order to help raise awareness of the Cordon Count database, topical issues such as high occupancy vehicles (HOV), transit use, and truck traffic are included in the analyses.

## 1.2 Background

The Cordon Count program has been established to collect and monitor changes in commuting behaviours and travel patterns across the GTA. The trends and patterns developed through the Cordon Count program are a valuable tool in planning and decision-making.

The City of Toronto implemented the program in 1975. Similar counting programs were later initiated by other regions with the aim of assisting in the systematic identification of transportation trends in the GTA.

Historically, counts are conducted during May and early June (prior to the end of the school year) on weekdays (except Fridays). Therefore, data is as representative of the typical day as possible. Efforts have also been taken to ensure that schedules for the Cordon Count program are synchronized with other data collection programs, such as the Statistics Canada Census and the Transportation Tomorrow Survey (TTS).

#### 1.3 What is the Cordon Count Program?

The Cordon Count program involves counts at over one thousand counting stations across the entire GTA.

The program provides an invaluable source of data on commuting behaviours and travel trends and patterns in the GTA. This data is useful in the public and private sectors for understanding past trends, understanding commuter response to factors beyond transportation supply, approximating future needs, developing new initiatives (such as High Occupancy Vehicle lanes), strategic planning, decisions making, policy formation, and planning.

# 1.4 Logistics of Collecting Cordon Count Data

Counting stations are established at key travel locations throughout the GTA. A series of stations are used to form a screenline. A screenline is a pre-determined imaginary line spanning a major road, municipal boundary, a man-made boundary (such as a railway) or a natural boundary (such as a river). Screenlines are currently established across key locations and boundaries in the regions of Peel, York, Halton, Durham, and the City of Toronto.

The Cordon Count program collects information on persons and vehicles, in addition to various modes of transportation, such as cars, buses, taxis, GO Trains, subways, streetcars, and bikes. Specific details on vehicle type and number of occupants per vehicle are gathered in order to capture a complete set of data regarding individual person and vehicular movements in the GTA.



All counts are stored at 15-minute intervals and grouped by station. This allows data to be aggregated at various levels for a more detailed analysis. Data has been collected for a number of years, over 30 years in some instances, allowing for a comprehensive trend analysis.

Currently, manual counting is the only practical method of obtaining the vehicle type and occupancy data required. Vehicle volume and classification data are increasingly being supplemented by automated methods and estimates. Ridership counts are provided by the Toronto Transit Commission and GO Transit.

## 1.5 Data Storage System

The GTA Cordon Count Committee consists of the following groups:

- Ministry of Transportation, Ontario
- Regional Municipality of Durham
- Regional Municipality of Halton
- Regional Municipality of Peel
- Regional Municipality of York
- City of Toronto
- Toronto Transit Commission
- GO Transit

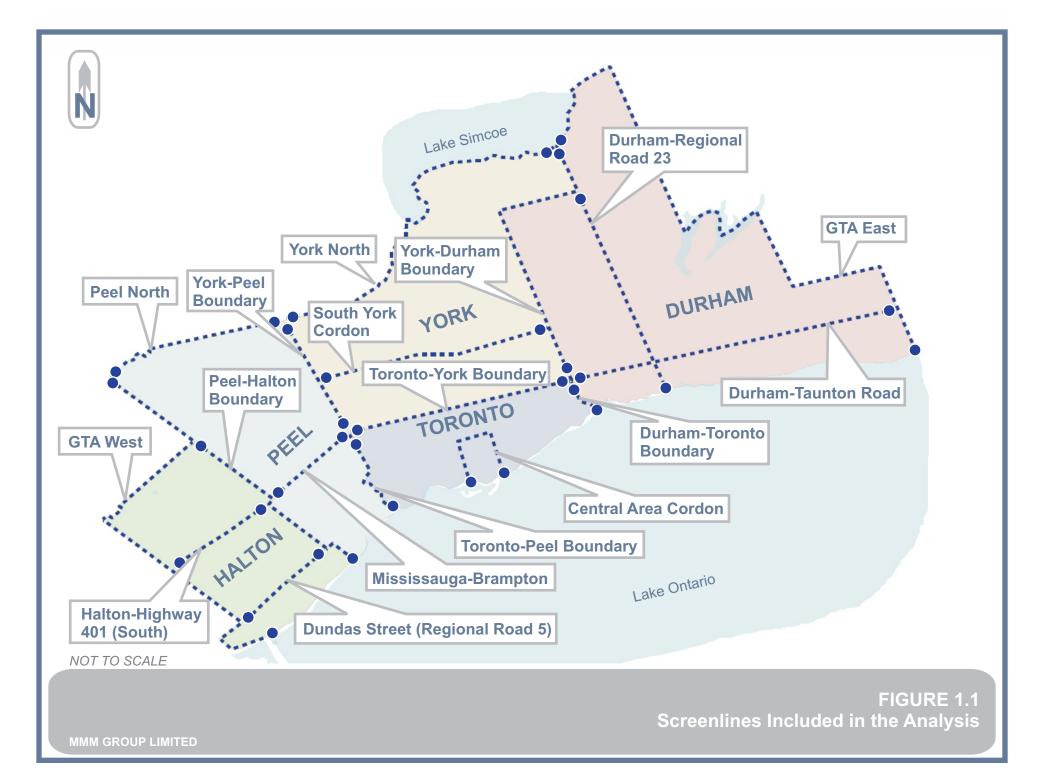
This committee meets on a regular basis to share knowledge, ensure consistency between program partners, and to decide on technical issues related to the collection, analysis and dissemination of the database.

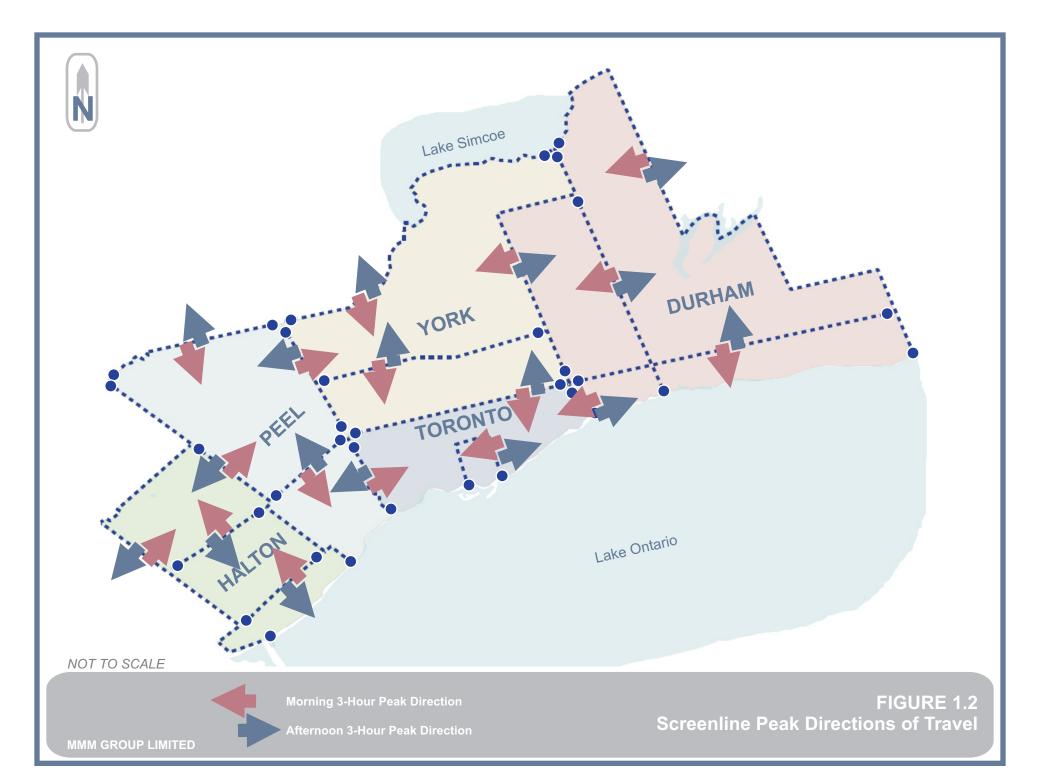
The DMG currently houses the Cordon Count database. The database is accessible to government agencies, consultants, and the public through the internet Cordon Count Data Retrieval System (CCDRS). The CCDRS allows users to search, aggregate, cross-reference, and retrieve information such as the number of automobiles with two passengers transgressing the York-Toronto boundary in 24 hours. Currently, the dataset covers detailed information for forty-three cordon count programs from the regions of Peel, Halton, Durham, York and the City of Toronto spanning a time period from 1975 to 2006.

#### 1.6 Organization of this Report

The analysis of the trends and issues pertaining to this study is organized in the following format:

- Overall Trend Analysis
- Mode of Transportation
- Transit
- Commercial Vehicles
- Use of Major Roads and Transit Facilities
- Topical Issues
  - Peaking Characteristics and Peak Hour Spreading
  - Auto Occupancy and High Occupancy Vehicles
  - School Bus Usage
  - Reverse Commuting
- Review of the Cordon Count Data Collection Method


For the purpose of this analysis, key screenlines were developed across regional and significant boundaries. This was done to highlight the key travel trends in the GTA. **Figure 1.1** is a map of the screenlines used in this analysis.


The peak direction of travel on each screenline is shown in **Figure 1.2**. A stand-alone executive summary is provided in addition to this report.

Peak period definitions and Screenline Definitions are found in **Appendix A** and **Appendix B**, respectively.

This report serves as a compendium to the 2003 GTA Cordon Count Report (defining trends between 1991 and 2001), which can be downloaded from the University of Toronto Data Management Group website.







## 2.0 OVERALL TRENDS

#### 2.1 Focus

This section presents the overall changes in person trips and vehicle trips across the GTA screenlines during the morning and afternoon peak periods as well as for the total count period. The counts represent the change in a typical weekday from 1991 to 2006.

Please refer to:

Table 2.1 Change in of Person and Vehicle Crossings(Both Directions) – Total Count Period (1991 to 2006).

*Figure 2.1* Change in Number of Person Crossings (Peak Direction) - Morning and Afternoon Peak Periods (1991 to 2006).

*Figure 2.2 Change in Number of Vehicle Crossings (Peak Direction) - Morning and Afternoon Peak Periods (1991 to 2006).* 

*Figure 2.3 Change in HBW Trips by Origin, Destination, and Remaining Within Each Region.* 

#### 2.2 Summary of Trends

#### 2.2.1 Total Count Period

The screenlines do not have a definitive peak direction during the total count period, therefore both directions are considered in this overall analysis. Tables showing peak direction volumes are included in **Appendix C**. It is expected that the count periods vary by region; therefore a total count period is examined in this analysis. The total count period helps to capture the spatial separation in trips.

The five screenlines with the highest numerical and percentage growth in person trips are shown below.

| Toronto-York Boundary | +311,838 |
|-----------------------|----------|
| Peel-Halton Boundary  | +199,965 |
| GTA West              | +186,719 |
| Mississauga-Brampton  | +164,966 |
| York-Peel Boundary    | +146,945 |
|                       |          |
|                       |          |
| York-Peel Boundary    | +243%    |

| York-Peel Boundary   | +243% |
|----------------------|-------|
| Halton-Highway 401   | +119% |
| Peel-Halton Boundary | +61%  |
| GTA West             | +60%  |
| York North           | +59%  |

The five screenlines with the highest numerical and percentage growth in vehicle trips are shown below.

| Toronto-York Boundary | +322,269 |
|-----------------------|----------|
| Peel-Halton Boundary  | +226,675 |
| Mississauga-Brampton  | +176,167 |
| GTA West              | +169,242 |
| York-Peel Boundary    | +137,810 |
|                       |          |

| York-Peel Boundary   | +282% |
|----------------------|-------|
| Halton-Highway 401   | +142% |
| Peel-Halton Boundary | +87%  |
| Durham-Taunton Road  | +83%  |
| York North           | +76%  |

The results show a strong increase in vehicle and person trips between the regions west and north of Toronto on both a percentage and absolute basis. All of the above screenlines, except for the York-Peel Boundary and GTA West, have experienced a higher numerical increase in vehicle trips than person trips. In addition, the Toronto-Peel Boundary has experienced a decrease in the number of person trips whereas the vehicle trips have increased. The Central Area Cordon



has experienced a decrease in the number of trips in both directions between 1991 and 2006. In all cases, the percentage increase in vehicle trips was higher than the percentage increase in person trips.

The 2003 GTA Cordon Count Report (documenting trends between 1991 and 2001) highlights a high change in growth for trips between "905" regions and only a small change in vehicles entering and leaving Toronto's Central Area between 1991 and 2001. This trend was also demonstrated from 1991 to 2006, with an overall 2% decline in vehicles across the Central Area Cordon and a 43% change in vehicles across regional screenlines from 1991 to 2006.

#### 2.2.2 Morning Peak Period

**Durham-Taunton Road** 

The five screenlines with the highest numerical and percentage growth in **person trips** in the peak direction during the Morning Peak Period are shown below.

| Toronto-York Boundary | +66,849 |
|-----------------------|---------|
| Peel-Halton Boundary  | +31,569 |
| York-Peel Boundary    | +29,374 |
| GTA West              | +28,774 |
| Mississauga-Brampton  | +21,208 |
|                       |         |
| York-Peel Boundary    | +314%   |
| Halton-Highway 401    | +156%   |
| York-Durham Boundary  | +101%   |
| York North            | +83%    |

The five screenlines with the highest numerical and percentage growth in **vehicle trips** in the peak direction during the Morning Peak Period are shown below.

+78%

| Toronto-York Boundary | +59,769 |
|-----------------------|---------|
| Peel-Halton Boundary  | +29,470 |
| York-Peel Boundary    | +27,476 |
| GTA West              | +26,411 |
| Mississauga-Brampton  | +22,432 |
|                       |         |
| VID D I               | 25204   |
| York-Peel Boundary    | +353%   |
| Halton-Highway 401    | +168%   |
| York-Durham Boundary  | +118%   |
| York North            | +95%    |
| Durham-Taunton Road   | +88%    |

In all the above cases, except for Mississauga-Brampton, the numerical growth in person crossings was greater than for vehicle crossings. As was the case for the total count period, the highest growth was in the north and west of the GTA.

#### 2.2.3 Afternoon Peak Period

South York Cordon

The five screenlines with the highest numerical and percentage growth in **person trips** in the peak direction during the Afternoon Peak Period are shown below.

| Toronto-York Boundary | +68,303 |
|-----------------------|---------|
| Peel-Halton Boundary  | +30,313 |
| York-Peel Boundary    | +30,006 |
| GTA West              | +28,235 |
| Mississauga-Brampton  | +27,143 |
|                       |         |
|                       |         |
| York-Peel Boundary    | +265%   |
| Halton-Highway 401    | +123%   |
| York-Durham Boundary  | +96%    |
| York North            | +76%    |

The five screenlines with the highest numerical and percentage growth in **vehicle trips** in the peak direction during the Afternoon Peak Period are shown below.

+57%

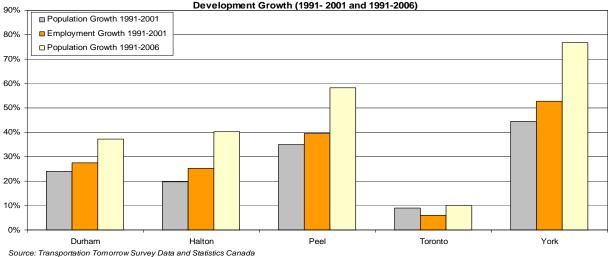


| Toronto-York Boundary   | +58,640 |
|-------------------------|---------|
| Peel-Halton Boundary    | +31,513 |
| York-Peel Boundary      | +26,273 |
| Mississauga-Brampton    | +25,543 |
| South York Cordon       | +23,217 |
|                         |         |
|                         |         |
| York-Peel Boundary      | +296%   |
| Halton-Highway 401      | +136%   |
| York-Durham Boundary    | +116%   |
| York North              | +104%   |
| Durham Regional Road 23 | +76%    |

In all the above cases, except the Peel-Halton Boundary, the numerical growth in person crossings was greater than for vehicle crossings. The Central Area Cordon has experienced a decrease of approximately 5% in person crossings in the peak direction between 1991 and 2006.

The afternoon and morning peak periods show a high degree of commonality in terms of the highest five person trips and vehicular trips.

#### 2.3 Demographic Trends and Issues


The summary of trends indicates significant growth in travel across the regions between 1991 and 2006. In

general, during the morning and afternoon peak periods the growth in person trips was only marginally higher than growth in vehicle trips for both directions combined. This is an encouraging trend although the difference is very minor. There could be a number of reasons for this such as commuter response to better transit services and high sustained gas prices at the pump, which is effectively reducing the consumer surplus. Of note is the Toronto-York Boundary, where the relatively higher increase in person trips could be a response to increasing gas prices and newer and well integrated transit services (VIVA, GO) with the rest of the GTA, specifically the City of Toronto.

The significance of the above trend could be far reaching and is addressed in more detail in the sections of mode choice and auto occupancy.

Strong transportation growth is indicative of a growing population and employment base and a healthy economy. However, high growth in vehicular traffic has created issues of traffic congestion and air quality.

The graph below (labeled "Development Growth") shows the change in population from 1991 to 2001 and 1991 to 2006, and the change in employment from 1991 to 2001 for the various regions in the GTA. Statistics Canada 2006 employment data was not available when this report was undertaken.



Note: Employment data was not available from Statistics Canada when this figure was developed



York Region, followed by Peel Region, has recorded the highest percent growth in both employment and population. This growth is reflected in the fact that major screenlines in these two regions (Toronto-York and York-Peel boundary) have experienced high numerical increases in person and vehicle crossings during the morning, afternoon and total count periods, compared to all other screenlines.

Of particular significance in understanding travel patterns across the GTA is the growing "cross commuting" between the '905' regions. The tables below show the percentage change in home-based work (HBW) trips in the GTA from 1991 to 2001 and 2001 to 2006, broken down into trips between each origin-destination pair.

The City of Toronto is the major producer / attractor of HBW trips within the GTA. However, with new employment centres outside the "traditional" downtown and relocation of population to suburban locales, the '905' regions are increasingly influencing travel patterns across the GTA. There is an increasing number of trips taking place between the '905' regions giving rise to significant east-west traffic patterns. This has been facilitated by the construction of Highway 407 and other major capacity upgrades to the arterial network in the GTA.

|        | Change in Home-Based Work (HBW) Trips (1991-2001) |         |        |      |      |        |  |
|--------|---------------------------------------------------|---------|--------|------|------|--------|--|
|        | DESTINATION                                       |         |        |      |      |        |  |
|        |                                                   | Toronto | Durham | York | Peel | Halton |  |
| Z      | Toronto                                           | -1%     | 16%    | 33%  | 10%  | 9%     |  |
| GIN    | Durham                                            | 17%     | 12%    | 74%  | 55%  | 166%   |  |
| )RI    | York                                              | 33%     | 60%    | 58%  | 91%  | 162%   |  |
| $\cup$ | Peel                                              | 11%     | 68%    | 93%  | 41%  | 66%    |  |
|        | Halton                                            | 15%     | 45%    | 92%  | 50%  | 7%     |  |

#### Change in Home-Based Work (HBW) Trips (2001 - 2006)

|         | DESTINATION |        |      |      |        |  |
|---------|-------------|--------|------|------|--------|--|
|         | Toronto     | Durham | York | Peel | Halton |  |
| Toronto | -7%         | 1%     | 6%   | 2%   | 0%     |  |
| Durham  | 1%          | 7%     | 12%  | 11%  | 16%    |  |
| York    | 5%          | 14%    | 14%  | 15%  | 16%    |  |
| Peel    | 3%          | 6%     | 14%  | 12%  | 21%    |  |
| Halton  | 1%          | 19%    | 17%  | 26%  | 14%    |  |

Source: Preliminary 2006 Transportation Tomorrow Survey Data



The change in HBW trip origins and destinations, and those remaining within each region are shown in **Figure 2.3**.

All regions, except the City of Toronto, experienced an increase in HBW trip origins and destinations, and those within each region from 1991 to 2001, 1991 to 2006, and from 2001 to 2006.

The highest numerical and percent increases in HBW trips from 1991 to 2001 and from 1991 to 2006 were experienced by the Regional Municipalities of York and Peel. From 2001 to 2006, the highest numerical increase was experienced by the Regional Municipality of Peel and the highest percentage increase was experienced by the Regional Municipality of Halton. These increases are in accordance with the growth recorded across the screenlines.



# **TOTAL PERSONS-Total Count Period-Both Directions**

|                                 | 1991      | 2006      | Change   | %    |
|---------------------------------|-----------|-----------|----------|------|
| Durham-Taunton Road             | 126,188   | 200,438   | 74,250   | 59%  |
| Durham-Regional Road 23         | 153,863   | 222,434   | 68,571   | 45%  |
| GTA East                        | 80,468    | 85,950    | 5,482    | 7%   |
| York-Durham Boundary            | 55,428    | 81,021    | 25,593   | 46%  |
| York-Peel Boundary              | 60,542    | 207,487   | 146,945  | 243% |
| York North                      | 75,250    | 119,625   | 44,375   | 59%  |
| South York Cordon               | 225,480   | 299,934   | 74,454   | 33%  |
| Peel-Halton Boundary            | 327,095   | 527,060   | 199,965  | 61%  |
| Peel North                      | 39,135    | 45,285    | 6,150    | 16%  |
| Mississauga-Brampton            | 291,717   | 456,683   | 164,966  | 57%  |
| GTA West                        | 311,794   | 498,513   | 186,719  | 60%  |
| Halton-Highway 401 (South)      | 57,655    | 126,222   | 68,567   | 119% |
| Dundas Street (Regional Road 5) | 183,684   | 258,818   | 75,134   | 41%  |
| Durham-Toronto Boundary         | 211,487   | 267,049   | 55,562   | 26%  |
| Toronto-York Boundary           | 933,616   | 1,245,454 | 311,838  | 33%  |
| Toronto-Peel Boundary           | 981,855   | 963,924   | -17,931  | -2%  |
| Central Area Cordon             | 1,803,798 | 1,696,982 | -106,816 | -6%  |

**TOTAL VEHICLES-Total Count Period-Both Directions** 

|                                 | 1991    | 2006      | Change  | %    |
|---------------------------------|---------|-----------|---------|------|
| Durham-Taunton Road             | 99,849  | 182,835   | 82,986  | 83%  |
| Durham-Regional Road 23         | 124,238 | 208,887   | 84,649  | 68%  |
| GTA East                        | 65,601  | 81,250    | 15,649  | 24%  |
| York-Durham Boundary            | 44,143  | 70,156    | 26,013  | 59%  |
| York-Peel Boundary              | 48,922  | 186,732   | 137,810 | 282% |
| York North                      | 55,691  | 97,854    | 42,163  | 76%  |
| South York Cordon               | 178,245 | 252,112   | 73,867  | 41%  |
| Peel-Halton Boundary            | 260,283 | 486,958   | 226,675 | 87%  |
| Peel North                      | 32,649  | 43,732    | 11,083  | 34%  |
| Mississauga-Brampton            | 252,103 | 428,270   | 176,167 | 70%  |
| GTA West                        | 234,234 | 403,476   | 169,242 | 72%  |
| Halton-Highway 401 (South)      | 46,087  | 111,652   | 65,565  | 142% |
| Dundas Street (Regional Road 5) | 146,607 | 221,461   | 74,854  | 51%  |
| Durham-Toronto Boundary         | 172,374 | 244,543   | 72,169  | 42%  |
| Toronto-York Boundary           | 794,309 | 1,116,578 | 322,269 | 41%  |
| Toronto-Peel Boundary           | 797,315 | 862,069   | 64,754  | 8%   |
| Central Area Cordon             | 804,864 | 790,790   | -14,074 | -2%  |

# **TABLE 2.1**

Change in Person and Vehicle Crossings (Both Directions) Total Count Period (1991 to 2006)



#### TOTAL PERSONS-Morning 3-Hour Peak Period-Peak Direction

|   |                                 | 1991          | 2006         | Change        | %    |
|---|---------------------------------|---------------|--------------|---------------|------|
|   | Durham-Taunton Road             | 13,351        | 23,727       | 10,376        | 78%  |
|   | Durham-Regional Road 23         | 24,700        | 37,392       | 12,692        | 51%  |
|   | GTA East                        | 8,102         | 10,083       | 1,981         | 24%  |
|   | York-Durham Boundary            | 10,644        | 21,358       | 10,714        | 101% |
| 3 | York-Peel Boundary              | 9,342         | 38,716       | 29,374        | 314% |
|   | York North                      | 12,454        | 22,813       | 10,359        | 83%  |
| _ | South York Cordon               | 51,382        | 68,484       | 17,102        | 33%  |
| 2 | Peel-Halton Boundary            | 54,446        | 86,015       | 31,569        | 58%  |
|   | Peel North                      | 5,856         | 7,058        | 1,202         | 21%  |
| 5 | Mississauga-Brampton            | 52,553        | 73,761       | 21,208        | 40%  |
| 4 | GTA West                        | 43,804        | 72,578       | 28,774        | 66%  |
| _ | Halton-Highway 401 (South)      | 8,106         | 20,787       | 12,681        | 156% |
|   | Dundas Street (Regional Road 5) | 28,784        | 33,879       | 5,095         | 18%  |
|   | Durham-Toronto Boundary         | 37,694        | 53,724       | 16,030        | 43%  |
| 1 | Toronto-York Boundary           | 118,870       | 185,719      | 66,849        | 56%  |
|   | Toronto-Peel Boundary           | 134,809       | 142,739      | 7,930         | 6%   |
|   | Central Area Cordon             | 310,938       | 328,940      | 18,002        | 6%   |
|   | TOTAL PERSONS-Afterr            | noon 3-Hour I | Peak Period- | Peak Directio | on   |

|     |                                 | 1991    | 2006    | Change  | %    |
|-----|---------------------------------|---------|---------|---------|------|
|     | Durham-Taunton Road             | 21,734  | 31,295  | 9,561   | 44%  |
|     | Durham-Regional Road 23         | 29,643  | 42,933  | 13,290  | 45%  |
|     | GTA East                        | 11,710  | 14,281  | 2,571   | 22%  |
|     | York-Durham Boundary            | 11,789  | 23,086  | 11,297  | 96%  |
| 3   | York-Peel Boundary              | 11,314  | 41,320  | 30,006  | 265% |
| _   | York North                      | 15,024  | 26,504  | 11,480  | 76%  |
|     | South York Cordon               | 46,076  | 72,421  | 26,345  | 57%  |
| 2   | Peel-Halton Boundary            | 60,047  | 90,360  | 30,313  | 50%  |
|     | Peel North                      | 6,653   | 9,183   | 2,530   | 38%  |
| 5   | Mississauga-Brampton            | 50,547  | 77,690  | 27,143  | 54%  |
| 4   | GTA West                        | 52,017  | 80,252  | 28,235  | 54%  |
| _   | Halton-Highway 401 (South)      | 9,628   | 21,498  | 11,870  | 123% |
|     | Dundas Street (Regional Road 5) | 30,494  | 39,797  | 9,303   | 31%  |
|     | Durham-Toronto Boundary         | 35,618  | 52,140  | 16,522  | 46%  |
| (1) | Toronto-York Boundary           | 132,055 | 200,358 | 68,303  | 52%  |
| _   | Toronto-Peel Boundary           | 153,843 | 162,295 | 8,452   | 5%   |
|     | Central Area Cordon             | 343,400 | 327,343 | -16,057 | -5%  |
|     |                                 |         |         |         |      |

#### NOT TO SCALE

- Afternoon 3-Hour Peak Direction
- Morning Largest Magnitude Numerical Change (1 = Largest)
  Afternoon Largest Magnitude Numerical Change (1 = Largest)
  MMM GROUP LIMITED

Change in Number of Person Crossings (Peak Direction) Morning and Afternoon Peak Periods (1991 to 2006)

**FIGURE 2.1** 

|                                 | 1991    | 2006    | Change | %    |
|---------------------------------|---------|---------|--------|------|
| Durham-Taunton Road             | 11,596  | 21,854  | 10,258 | 88%  |
| Durham-Regional Road 23         | 19,305  | 36,151  | 16,846 | 87%  |
| GTA East                        | 7,256   | 10,283  | 3,027  | 42%  |
| York-Durham Boundary            | 9,108   | 19,826  | 10,718 | 118% |
| 3 York-Peel Boundary            | 7,791   | 35,267  | 27,476 | 353% |
| York North                      | 10,041  | 19,570  | 9,529  | 95%  |
| South York Cordon               | 40,982  | 58,377  | 17,395 | 42%  |
| 2 Peel-Halton Boundary          | 40,341  | 69,811  | 29,470 | 73%  |
| Peel North                      | 5,303   | 7,015   | 1,712  | 32%  |
| 5 Mississauga-Brampton          | 43,082  | 65,514  | 22,432 | 52%  |
| 4 GTA West                      | 34,097  | 60,508  | 26,411 | 77%  |
| Halton-Highway 401 (South)      | 6,977   | 18,673  | 11,696 | 168% |
| Dundas Street (Regional Road 5) | 23,420  | 30,051  | 6,631  | 28%  |
| Durham-Toronto Boundary         | 27,526  | 43,388  | 15,862 | 58%  |
| 1) Toronto-York Boundary        | 100,767 | 160,536 | 59,769 | 59%  |
| Toronto-Peel Boundary           | 99,758  | 106,577 | 6,819  | 7%   |
| Central Area Cordon             | 100,538 | 107,286 | 6,748  | 7%   |

TOTAL VEHICLES-Afternoon 3-Hour Peak Period-Peak Direction

|                                 | 1991    | 2006    | Change | %    |
|---------------------------------|---------|---------|--------|------|
| Durham-Taunton Road             | 16,116  | 27,547  | 11,431 | 71%  |
| Durham-Regional Road 23         | 22,217  | 39,083  | 16,866 | 76%  |
| GTA East                        | 9,411   | 12,590  | 3,179  | 34%  |
| York-Durham Boundary            | 9,314   | 20,091  | 10,777 | 116% |
| York-Peel Boundary              | 8,865   | 35,138  | 26,273 | 296% |
| York North                      | 11,210  | 22,843  | 11,633 | 104% |
| South York Cordon               | 37,059  | 60,276  | 23,217 | 63%  |
| Peel-Halton Boundary            | 43,552  | 75,065  | 31,513 | 72%  |
| Peel North                      | 5,597   | 8,393   | 2,796  | 50%  |
| Mississauga-Brampton            | 40,878  | 66,421  | 25,543 | 62%  |
| GTA West                        | 40,762  | 63,863  | 23,101 | 57%  |
| Halton-Highway 401 (South)      | 8,016   | 18,886  | 10,870 | 136% |
| Dundas Street (Regional Road 5) | 25,127  | 33,041  | 7,914  | 31%  |
| Durham-Toronto Boundary         | 24,931  | 41,274  | 16,343 | 66%  |
| Toronto-York Boundary           | 107,602 | 166,242 | 58,640 | 54%  |
| Toronto-Peel Boundary           | 110,548 | 119,443 | 8,895  | 8%   |
| Central Area Cordon             | 109,154 | 112,058 | 2,904  | 3%   |

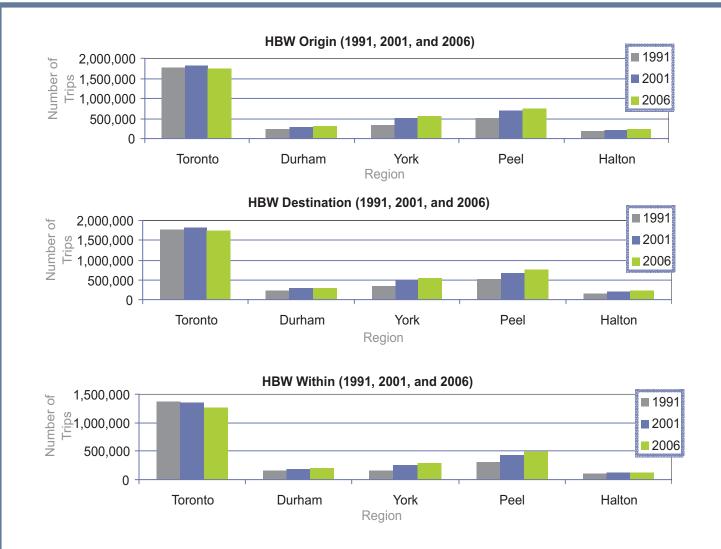
#### NOT TO SCALE

Morning 3-Hour Peak Direction

- Afternoon 3-Hour Peak Direction
- **6** Morning Largest Magnitude Numerical Change (1 = Largest)

Lake Simcoe

ORONTO


DURHAM

Lake Ontario

Afternoon Largest Magnitude Numerical Change (1 = Largest) MMM GROUP LIMITED Change in Number of Vehicle Crossings (Peak Direction) Morning and Afternoon Peak Periods (1991 to 2006)

FIGURE 2.2

#### TOTAL VEHICLES-Morning 3-Hour Peak Period-Peak Direction



#### Change in HBW Trips (1991 to 2001, 1991 to 2006 and 2001 to 2006)

|         |         |        | 1991 to 2001    |           |          |           |
|---------|---------|--------|-----------------|-----------|----------|-----------|
|         | HBW (   | Drigin | HBW Des         | stination | HBW With | in Region |
|         | Change  | %      | Change          | %         | Change   | %         |
| Toronto | 56,609  | 3%     | 61,154          | 3%        | -17,659  | -1%       |
| Durham  | 40,322  | 17%    | 37,566          | 16%       | 19,875   | 12%       |
| York    | 166,592 | 50%    | 166,750         | 50%       | 90,571   | 58%       |
| Peel    | 179,348 | 36%    | 175,538         | 34%       | 126,236  | 41%       |
| Halton  | 29,019  | 17%    | 30,882          | 18%       | 7,770    | 7%        |
|         |         |        | 2001 to 2006    |           |          |           |
|         | HBW (   | Drigin | HBW Destination |           | HBW With | in Region |
|         | Change  | %      | Change          | %         | Change   | %         |
| Toronto | -76,289 | -4%    | -76,633         | -4%       | -91,257  | -7%       |
| Durham  | 17,102  | 6%     | 17,486          | 6%        | 13,666   | 7%        |
| York    | 52,791  | 10%    | 53,564          | 11%       | 34,534   | 14%       |
| Peel    | 71,119  | 10%    | 72,811          | 11%       | 51,763   | 12%       |
| Halton  | 29,224  | 15%    | 26,719          | 13%       | 16,706   | 14%       |

# Figure 2.3 Change in HBW Trips by Origin, Destination, and Remaining Within Each Region\*

MMM GROUP LIMITED

\* Based on Preliminary 2006 Transportation Tomorrow Survey Data

## 3.0 MODE OF TRANSPORTATION

#### 3.1 Focus

This section presents the changes in the use of different modes of travel across the GTA. The modes analyzed are as follows: Auto (Auto Driver and Auto Passenger), GO Rail, GO Bus, and Other Transit. Other Transit consists primarily of bus and subway service excluding GO Rail, GO Bus, and School Buses. Other travel modes such as bicycles, walking, taxis etc. have not been recorded in sufficient detail between the two years (1991 and 2006), and their volumes are not significant enough to warrant a detailed analysis.

GO Bus was separated as a mode because it represents cross commuting patterns between municipalities. The analysis was completed for the morning peak period. GO Bus is further detailed in the figures in **Section 4.0** for both the morning and afternoon 3-hour peak periods.

The tables below present the numerical increase in crossings. Although the percentage increase for some of the screenlines was very high, the actual change in the number was relatively small. The modal shares as percentages and numerical values are highlighted in Table 3.1 and Table 3.2.

Please refer to:

**Table 3.1** Percent Modal Shares of Person Trips (BothDirections) – Morning Peak Period (1991 to 2006).

**Table 3.2** Numerical Modal Shares of Person Trips(Both Directions) – Morning Peak Period (1991 to2006).

Figure 3.1 Graphs of Modal Shares of Person Trips (Both Directions) – Morning Peak Period (1991 to 2006).

## 3.2 Summary of Trends

## 3.2.1 Auto

The five screenlines with the highest numerical growth in auto (including both driver and passenger) crossings in the peak direction from 1991 to 2006 are shown below with their respective percent growth.

| Toronto-York Boundary | +54,307 (53%)  |
|-----------------------|----------------|
| Peel-Halton Boundary  | +27,499 (67%)  |
| GTA West              | +27,008 (89%)  |
| York-Peel Boundary    | +26,384 (317%) |
| Central Area Cordon   | +24,050 (22%)  |

## 3.2.2 GO Rail

The five screenlines with the highest numerical growth in person crossings by GO Rail in the peak direction from 1991 to 2006 are shown below with their respective percent growth.

| Central Area Cordon     | +23,773 (62%) |
|-------------------------|---------------|
| Toronto-Peel Boundary   | +11,955 (58%) |
| Toronto-York Boundary   | +7,442 (228%) |
| Peel-Halton Boundary    | +5,254 (65%)  |
| Durham-Toronto Boundary | +3,517 (50%)  |

## 3.2.3 GO Bus

The five screenlines with the highest numerical growth in person crossings by GO Bus in the peak direction from 1991 to 2006 are shown below.

| Toronto-York Boundary | +2,086 |
|-----------------------|--------|
| South York Cordon     | +764   |
| Toronto-Peel Boundary | +708   |
| GTA West              | +669   |
| Durham-Regional Rd 23 | +667   |



No GO Bus service was recorded across the above screenlines in 1991.

#### 3.2.4 Other Transit

The five screenlines with the highest numerical growth in person crossings by Other Transit service in the peak direction from 1991 to 2006 are shown below with their respective percent growth. These numbers do not include services offered by GO.

| Toronto-York Boundary | +223 (2%)  |
|-----------------------|------------|
| York North            | +129 (61%) |
| York-Peel Boundary    | +78 (28%)  |
| Durham-Taunton Road   | +21 (10%)  |
| GTA East              | -13 (-8%)  |

# 3.2.5 Proportion of Person Crossings by Mode

The number and percentage of person trips crossing the screenlines in both directions by each mode are presented below for the morning peak period.

|                | 1991    | <b>%91</b> | 2006      | %06 |
|----------------|---------|------------|-----------|-----|
| Auto Driver    | 802,500 | 61%        | 1,269,764 | 69% |
| Auto Passenger | 148,253 | 11%        | 132,497   | 7%  |
| GO Bus         | 2,648   | 0%         | 10,946    | 1%  |
| GO Rail        | 85,288  | 6%         | 145,908   | 8%  |
| School Bus     | 6,783   | 1%         | 35,477    | 2%  |
| Other Transit  | 277,499 | 21%        | 258,205   | 14% |

#### 3.2.6 Growth in Crossings by Mode

The total number of person crossings and the change in percentage share by each mode is shown below.

|                | 1991      | 2006      | % Chg |
|----------------|-----------|-----------|-------|
| Auto Driver    | 802,500   | 1,269,764 | 58%   |
| Auto Passenger | 148,253   | 132,497   | -11%  |
| GO Bus         | 2,648     | 10,946    | 313%  |
| GO Rail        | 85,288    | 145,908   | 71%   |
| School Bus     | 6,783     | 35,477    | 423%  |
| Other Transit  | 277,499   | 258,205   | -7%   |
| Total          | 1,322,971 | 1,852,797 | 40%   |

Transit is discussed in greater detail in Section 4.0.

#### 3.3 Conclusions

As expected, from 1991 to 2006, auto was the dominant mode of travel in the morning peak period (both directions). The number of person trips by the transit modes (GO Rail, GO Bus and Other Transit) has increased by approximately 14% (49,600) from 1991 to 2006; however, there has been a decrease in the transit modal split of approximately 5% from 1991 to 2006. The highest percent growth in transit person trips in both directions was GO Bus followed by GO Rail. This decrease in transit modal split reflects the increased spatial dispersion of development across the GTA, and the challenges of serving it with transit.

It should be noted that GO Bus was not a specific category for most agencies in 1991. This partly contributes to the significant increases in GO Bus ridership observed between 1991 and 2006. For example, in 1991, Durham and York GO Bus ridership was included in a category designated as other bus, which also included coaches and local transit. This would help explain why local transit showed a decrease in 2006. Halton, Peel, and Toronto do not have a separate category for school buses in 1991; consequently, school buses are lumped into the other bus category for the 1991 data and not the 2006 data.

The definition of other bus in the base data varies from 1991 to 2006 (i.e. GO Bus and school buses were



included in the other bus category for some regions in 1991). This is an inherent limitation in the 1991 data, however the 2006 data separates the school bus and GO Bus categories for all regions. The 2006 Other Transit category used in this analysis includes all transit service (excluding GO Bus, School Bus, and GO Rail).

There has been a general and significant increase in auto driver trips and a decrease in auto passenger trips from 1991 to 2006. This increase in auto driver person trips may be attributed to increasingly auto-dependent lifestyles, urban development, increased population within and adjacent to the GTA regions, and a lack of convenience and availability of other modes of travel in some areas. There was an 11% decrease in auto passenger trips from 1991 to 2006 for the morning peak period (both directions). This decline in auto passengers and increase in auto drivers indicates that auto occupancy rates have decreased from 1991 to 2006. This trend is discussed in **Section 8.0**.

There have been significant increases in GO Rail person trips from 1991 to 2006, but its modal share has increased only marginally (nearly 2%) in the morning peak period (both directions). The majority of GO Rail trips are destined for Toronto. This is not surprising, since Toronto has the most extensive transit service in the GTA to which GO Rail connects, as well as the downtown concentration of employment. The Central Area in the City of Toronto continues to remain the main attractor for GO Rail trips.

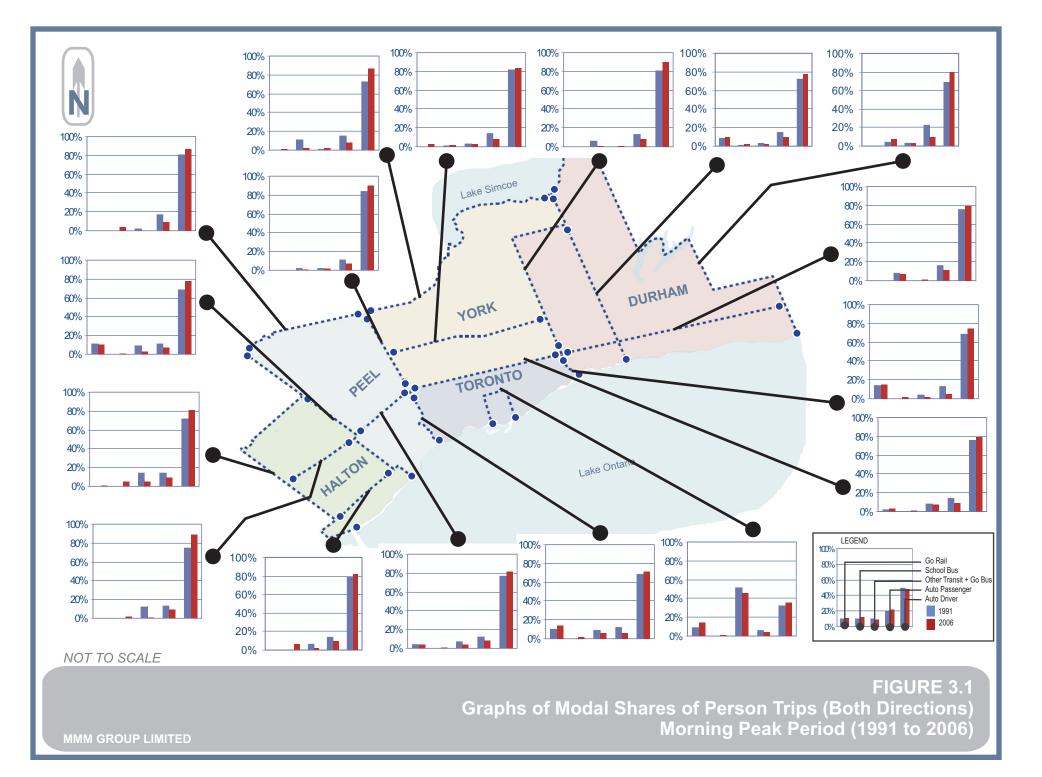
The Transportation Tomorrow Survey, a reputable source for trip information within the GTA, shows that a significant percentage of home-based work trips are made between the GTA regions as shown in the HBW Trip tables in **Section 2.0**. Therefore, cross commuting is a pattern that needs to be addressed.

In order to better understand trends in cross commuting, GO Bus person trips are analyzed separately. Overall,

there has been an increase in cross commuting via GO Bus with some screenlines showing a proportionally larger change than others. This is likely due to the varying availability and convenience of GO Bus service between regions; additionally, the expansion of local transit services have likely taken some of the shorter trip riders away from the GO Bus service. GO Bus is further discussed in **Section 4.0**.

The 7% modal share decrease in Other Transit trips appears to be compensated by an increase in trips by other modes of travel, such as GO Rail and GO Bus service. The overall decrease in Other Transit trips is likely due to the level of service being offered and improved road access (i.e. new interchanges, increased lane capacity, etc), that make automobile travel more attractive. Therefore, the transit numbers may be very sensitive to changes near the screenlines and not the region as a whole. This analysis focuses primarily on regional and inter-urban screenlines and therefore does not fully reflect the extent of transit travel within the regions. A decline in Other Transit should not be used as an indication of a decrease in transit within and between regions and urban areas. Other Transit is further discussed in Section 4.0.

This analysis focuses primarily on regional and interurban screenlines and therefore does not fully reflect the extent of **school bus trips** in the GTA. School bus trips captured by the screenlines in the morning are likely to reflect trips to school and fieldtrips. The increase in school bus trips is likely the result of increased population and changing development patterns throughout the GTA; additionally, school bus trips captured in 2006, but not captured in the 1991 Cordon Count may also contribute to this high growth. School Bus trips are discussed in **Section 9.0**.




|                                 | Year | Auto   | Auto      | GO Bus | GO Rail | School | Other   |
|---------------------------------|------|--------|-----------|--------|---------|--------|---------|
|                                 | rear | Driver | Passenger | GO Dus | GO Kali | Bus    | Transit |
| Durham-Taunton Road             | 1991 | 76.1%  | 16.2%     | -      | -       | 7.7%   | -       |
|                                 | 2006 | 80.2%  | 11.2%     | 0.7%   | -       | 7.3%   | 0.6%    |
| Durham-Regional Road 23         | 1991 | 72.6%  | 15.0%     | -      | 8.7%    | 0.9%   | 2.7%    |
|                                 | 2006 | 77.2%  | 9.6%      | 1.6%   | 9.4%    | 1.7%   | 0.5%    |
| GTA East                        | 1991 | 69.3%  | 23.0%     | -      | -       | 4.1%   | 3.5%    |
|                                 | 2006 | 79.4%  | 10.1%     | -      | -       | 7.7%   | 2.8%    |
| York-Durham Boundary            | 1991 | 80.9%  | 12.9%     | -      | -       | 5.8%   | 0.4%    |
|                                 | 2006 | 89.9%  | 7.9%      | 0.2%   | -       | 1.3%   | 0.7%    |
| York-Peel Boundary              | 1991 | 84.3%  | 11.2%     | -      | -       | 2.2%   | 2.3%    |
|                                 | 2006 | 90.1%  | 7.1%      | 0.6%   | -       | 1.1%   | 1.1%    |
| York North                      | 1991 | 72.3%  | 15.2%     | -      | -       | 11.1%  | 1.4%    |
|                                 | 2006 | 86.4%  | 8.5%      | 0.3%   | 1.2%    | 1.7%   | 1.9%    |
| South York Cordon               | 1991 | 81.4%  | 14.1%     | -      | -       | 1.4%   | 3.1%    |
|                                 | 2006 | 84.3%  | 8.1%      | 1.0%   | 2.9%    | 2.1%   | 1.6%    |
| Peel-Halton Boundary            | 1991 | 68.2%  | 11.3%     | 1.8%   | 11.2%   | -      | 7.6%    |
|                                 | 2006 | 77.6%  | 7.5%      | 0.6%   | 10.5%   | 1.5%   | 2.4%    |
| Peel North                      | 1991 | 80.9%  | 17.5%     | -      | -       | -      | 1.7%    |
|                                 | 2006 | 86.8%  | 8.7%      | 0.2%   | -       | 4.1%   | 0.1%    |
| Mississauga-Brampton            | 1991 | 76.3%  | 12.3%     | 1.8%   | 4.2%    | -      | 5.4%    |
|                                 | 2006 | 82.0%  | 8.0%      | 0.8%   | 4.4%    | 1.4%   | 3.5%    |
| Halton-Highway 401 (South)      | 1991 | 74.5%  | 13.0%     | -      | -       | -      | 12.5%   |
|                                 | 2006 | 88.5%  | 9.4%      | 0.0%   | -       | 1.5%   | 0.6%    |
| Dundas Street (Regional Road 5) | 1991 | 79.0%  | 14.1%     | -      | -       | -      | 6.9%    |
|                                 | 2006 | 82.1%  | 9.4%      | 0.2%   | -       | 6.9%   | 1.5%    |
| Durham-Toronto Boundary         | 1991 | 68.2%  | 13.4%     | -      | 14.3%   | -      | 4.1%    |
|                                 | 2006 | 74.8%  | 5.3%      | 1.0%   | 15.5%   | 2.2%   | 1.1%    |
| Toronto-York Boundary           | 1991 | 76.0%  | 14.1%     | -      | 1.7%    | -      | 8.2%    |
|                                 | 2006 | 79.1%  | 8.7%      | 0.8%   | 3.5%    | 1.4%   | 6.5%    |
| Toronto-Peel Boundary           | 1991 | 69.0%  | 11.8%     | -      | 9.9%    | -      | 9.3%    |
|                                 | 2006 | 71.8%  | 6.3%      | 0.5%   | 13.9%   | 1.6%   | 5.9%    |
| Central Area Cordon             | 1991 | 32.3%  | 6.5%      | -      | 9.5%    | -      | 51.7%   |
|                                 | 2006 | 35.7%  | 4.5%      | 0.2%   | 13.7%   | 0.8%   | 45.0%   |
| GTA West                        | 1991 | 72.1%  | 13.7%     | -      | -       | -      | 14.3%   |
|                                 | 2006 | 80.5%  | 9.2%      | 1.3%   | 0.7%    | 4.6%   | 3.7%    |

TABLE 3.1Percent Modal Shares of Person Trips (Both Directions)Morning Peak Period (1991 to 2006)

|                                 | Year Auto |         | Auto GO Bus |        |         | School | Other   |
|---------------------------------|-----------|---------|-------------|--------|---------|--------|---------|
|                                 | rear      | Driver  | Passenger   | GO Bus | GO Rall | Bus    | Transit |
| Durham-Taunton Road             | 1991      | 18,742  | 3,989       | -      | -       | 1,886  | -       |
|                                 | 2006      | 34,797  | 4,837       | 303    | -       | 3,157  | 276     |
| Durham-Regional Road 23         | 1991      | 26,134  | 5,392       | -      | 3,143   | 336    | 968     |
| U U                             | 2006      | 45,824  | 5,705       | 966    | 5,604   | 999    | 284     |
| GTA East                        | 1991      | 9,369   | 3,110       | -      | -       | 557    | 475     |
|                                 | 2006      | 13,019  | 1,660       | -      | -       | 1,270  | 451     |
| York-Durham Boundary            | 1991      | 11,461  | 1,830       | -      | -       | 819    | 55      |
|                                 | 2006      | 26,566  | 2,334       | 67     | -       | 396    | 204     |
| York-Peel Boundary              | 1991      | 11,671  | 1,548       | -      | -       | 306    | 325     |
| , i                             | 2006      | 56,667  | 4,471       | 379    | -       | 671    | 719     |
| York North                      | 1991      | 13,249  | 2,792       | -      | -       | 2,032  | 253     |
|                                 | 2006      | 26,042  | 2,557       | 86     | 351     | 523    | 570     |
| South York Cordon               | 1991      | 50,520  | 8,755       | -      | -       | 847    | 1,941   |
|                                 | 2006      | 77,957  | 7,459       | 910    | 2,714   | 1,896  | 1,504   |
| Peel-Halton Boundary            | 1991      | 51,087  | 8,430       | 1,315  | 8,377   | -      | 5,658   |
|                                 | 2006      | 101,446 | 9,770       | 743    | 13,709  | 1,981  | 3,131   |
| Peel North                      | 1991      | 6,427   | 1,387       | -      | -       | -      | 134     |
|                                 | 2006      | 8,355   | 835         | 21     | -       | 397    | 14      |
| Mississauga-Brampton            | 1991      | 56,390  | 9,054       | 1,333  | 3,074   | -      | 4,014   |
|                                 | 2006      | 91,656  | 8,978       | 842    | 4,873   | 1,528  | 3,863   |
| Halton-Highway 401 (South)      | 1991      | 8,954   | 1,566       | -      | -       | -      | 1,504   |
|                                 | 2006      | 28,218  | 2,999       | 5      | -       | 491    | 188     |
| Dundas Street (Regional Road 5) | 1991      | 33,421  | 5,953       | -      | -       | -      | 2,931   |
|                                 | 2006      | 48,666  | 5,543       | 101    | -       | 4,065  | 889     |
| Durham-Toronto Boundary         | 1991      | 34,813  | 6,856       | -      | 7,290   | -      | 2,096   |
|                                 | 2006      | 52,343  | 3,716       | 706    | 10,859  | 1,516  | 801     |
| Toronto-York Boundary           | 1991      | 146,427 | 27,178      | -      | 3,266   | -      | 15,866  |
|                                 | 2006      | 240,743 | 26,321      | 2,367  | 10,708  | 4,299  | 19,781  |
| Toronto-Peel Boundary           | 1991      | 146,205 | 25,036      | -      | 21,037  | -      | 19,758  |
|                                 | 2006      | 171,413 | 15,090      | 1,304  | 33,155  | 3,747  | 14,125  |
| Central Area Cordon             | 1991      | 132,613 | 26,853      | -      | 39,101  | -      | 212,616 |
|                                 | 2006      | 164,741 | 20,960      | 787    | 63,244  | 3,859  | 207,703 |
| GTA West                        | 1991      | 45,017  | 8,524       | -      | -       | -      | 8,905   |
|                                 | 2006      | 81,311  | 9,262       | 1,359  | 691     | 4,688  | 3,702   |

TABLE 3.2Numerical Modal Shares of Person Trips (Both Directions)<br/>Morning Peak Period (1991 to 2006)



## 4.0 TRANSIT

#### 4.1 Focus

This section focuses on transit trends in the GTA between 1991 and 2006. Because changes in transit patterns have not followed a simple straight-line relationship between 1991 and 2006, intermediate horizons of 1995 and 2001 were also addressed. In order to understand the impact of cross-commuting and inter-regional travel, GO Bus was maintained as a separate category. The tables below address the morning peak period since the trend in the data in the afternoon peak period was similar unless specifically noted. Figures 4.1 and 4.2 highlight both the afternoon and morning peak periods.

Please refer to:

*Figure 4.1 Change in GO Rail Passenger (Peak Direction) - Morning and Afternoon Peak Periods (1991 to 2006).* 

*Figure 4.2 Change in GO Bus Passenger (Peak Direction) - Morning and Afternoon Peak Periods (1991 to 2006).* 

#### 4.2 Summary of Trends

#### 4.2.1 GO Rail

The five screenlines with the highest numerical growth from 1991 to 2006 in person crossings by GO Rail in the morning 3-hour peak period in the peak direction are shown below.

| Central Area Cordon     | +23,773 |
|-------------------------|---------|
| Toronto-Peel Boundary   | +11,955 |
| Toronto-York Boundary   | +7,442  |
| Peel-Halton Boundary    | +5,254  |
| Durham-Toronto Boundary | +3,517  |

#### 4.2.2 GO Bus

The five screenlines with the highest numerical growth from 1991 to 2006 in person crossings by GO Bus in the morning 3-hour peak period in the peak direction are shown below.

| Toronto-York Boundary   | +2,086 |
|-------------------------|--------|
| South York Cordon       | +764   |
| Toronto-Peel Boundary   | +708   |
| GTA West                | +669   |
| Durham-Regional Road 23 | +667   |

#### 4.2.3 Other Transit

The four screenlines with the highest numerical growth from 1991 to 2006 in person crossings by Other Transit service in the morning 3-hour peak period in the peak direction are shown below.

| Toronto-York Boundary | +223 |
|-----------------------|------|
| York North            | +129 |
| York-Peel Boundary    | +78  |
| Durham-Taunton Road   | +21  |

#### 4.2.4 Proportion of Total Transit Crossings

The table below shows the share of each transit mode in both directions across all screenlines combined during the morning peak period.



|               | 1991    | % 91 | 2006    | % 06 |
|---------------|---------|------|---------|------|
| GO Bus        | 2,648   | 1%   | 10,946  | 3%   |
| GO Rail       | 85,288  | 23%  | 145,908 | 35%  |
| Other Transit | 277,499 | 76%  | 258,205 | 62%  |
| Total Transit | 365,435 |      | 415,059 |      |

#### 4.3 Conclusions

Transit modes account for approximately 415,000 (22%) of the total person trips crossing the screenlines in both directions in the morning peak period in 2006. Although 2006 transit ridership has increased from the 1991 value, transit as a mode share has dropped from approximately 365,400 (28%) in 1991.

Of note is the increase in the share of GO Rail and GO Bus crossings in the overall number of transit trips. The share of GO Rail ridership in total transit has increased from approximately 23% in 1991 to nearly 35% in 2006. A majority of these are destined to the Central Area and use GO Rail. The GO trips headed to areas outside the Central Area use GO Bus, reflecting an increase in cross-commuting patterns across the GTA.

Over the past fifteen years GO Rail service was expanded to serve Oshawa, Hamilton, and Newmarket/Bradford, and increased train frequencies were introduced on numerous services. As a result, some of the highest growth in GO Rail ridership has been recorded on screenlines measuring travel from these new stations.

With municipalities concentrating new population and employment growth along existing transportation and transit corridors, the increase in GO ridership is expected to continue as the GTA intensifies. The GO Bus service presents increased flexibility in terms of routes and schedules while maintaining relatively similar travel times to the GO Rail service in corridors where both are available. As a result, GO Bus ridership has also increased nearly five fold from 1991 to 2006 in the morning peak period. **Figure 4.2** highlights decreasing GO Bus ridership at the Peel-Halton Boundary and Mississauga-Brampton. This decrease in GO Bus ridership is partly the result of some passengers switching to GO Rail. These screenlines in particular have shown increases in GO Rail ridership from 1991 to 2006.

The Other Transit services experienced a 19,300 (14%) decrease in ridership across the screenlines in the morning peak period from 1991 to 2006. Approximately 27% of this drop in ridership is due to a decrease in Other Transit ridership across the Central Area Cordon, and approximately 43% of the drop relates to screenlines between the City of Toronto and other municipalities.

A decline in Other Transit should not be used as an indication of a decrease in transit within and between regions and urban areas. The screenlines used in this analysis do not capture Other Transit in enough detail to analyse those trends. These values are only an indication of a decrease in Other Transit captured by the screenlines used in this analysis. A more detailed review would be required in order to fully assess the trends in Other Transit from 1991 and 2006.

The decrease in Other Transit across the screenlines is likely the result of many factors including changing development patterns, route changes, and complex trip behaviour; furthermore, the addition of new GO Rail and GO Bus services have likely resulted in people switching from Other Transit modes to GO Transit services over the 1991 to 2006 period.

The 2003 GTA Cordon Count Report (reporting trends between 1991 and 2001) highlights a steady growth in inter-regional trips on GO Rail, but a decline in use of Other Transit service for these trips. It is difficult to directly compare results with the 2003 GTA Cordon Count Report as the screenlines and definitions used



for this analysis differ; additionally, new transit routes captured across screenlines influence the results. There was an overall increase in GO Rail trips and a decrease in Other Transit from 1991 to 2006 across regional boundaries.

The screenlines outside the Central Area Cordon have experienced a significant drop in bus ridership levels. Bus ridership across those screenlines has dropped from approximately 37,700 in 1991 to 29,400 (22%) in 2006.

A further review of transit trends observed in the 1995 and 2001 Cordon Count data was carried out to understand intermediate changes in ridership patterns. These are shown in the table below, which highlights morning peak period trips in both directions for the area within and outside the Central Area Cordon (CAC). There was a decline in total ridership from 1991 to 1995. Total ridership starts to rebound in 2001 with streetcar and subway ridership approaching the 1991 levels. The highest increase has been experienced in TTC streetcar ridership, whereas total bus ridership has shown an overall decline in 2006 from its 1991 level. The drop in bus ridership from 2001 to 2006 is partly attributed to increased auto congestion and new transit resulting in a mode change from bus to other forms of transit. It should be emphasized that although bus ridership has decreased, the total transit volume is trending upward. This also serves as an indication that existing transit riders are altering their mode choice.

TTC streetcars have experienced a nearly 4,800 (23%) trip increase in ridership between 1991 and 2006, which can be mainly attributed to major new services like the Spadina Streetcar and improvements in the service. Subway ridership has already begun to move up to 1991 ridership levels with the opening of major new subway lines (i.e. Sheppard Subway and the extension of the Spadina Subway north to Downsview).

The trends for municipal transit services in the '905' regions present a challenge to document since they are mainly contained within their respective regional boundaries. The decrease in ridership there can be partly attributed to the introduction of improved GO Rail and GO Bus services serving the downtown Toronto core and other destinations. A more detailed analysis will need additional screenlines that are located to effectively capture trends in local ridership.

|      |            | Outside<br>CAC* | CAC     | Total   |
|------|------------|-----------------|---------|---------|
|      | Streetcar  | 0               | 20,977  | 20,977  |
| 1991 | Subway     | 0               | 179,341 | 179,341 |
|      | Bus        | 37,720          | 12,298  | 50,018  |
|      | Street Car | 0               | 13,603  | 13,603  |
| 1995 | Subway     | 0               | 165,089 | 165,089 |
|      | Bus        | 23,151          | 12,902  | 36,053  |
|      | Streetcar  | 0               | 16,609  | 16,609  |
| 2001 | Subway     | 0               | 172,257 | 172,257 |
|      | Bus        | 21,806          | 20,163  | 41,969  |
|      | Streetcar  | 0               | 25,752  | 25,753  |
| 2006 | Subway     | 0               | 175,910 | 175,910 |
|      | Bus        | 29,383          | 6,041   | 35,424  |
|      | % (91-95)  | -39%            | -10%    | -14%    |
|      | % (95-01)  | -6%             | 9%      | 7%      |
|      | % (01-06)  | 35%             | -1%     | 3%      |
|      |            |                 |         |         |

\* This reflects the area outside the Central Area Cordon (CAC) but within the City of Toronto boundary



#### GO RAIL PASSENGERS-Morning 3-Hour Peak Period-Peak Direction

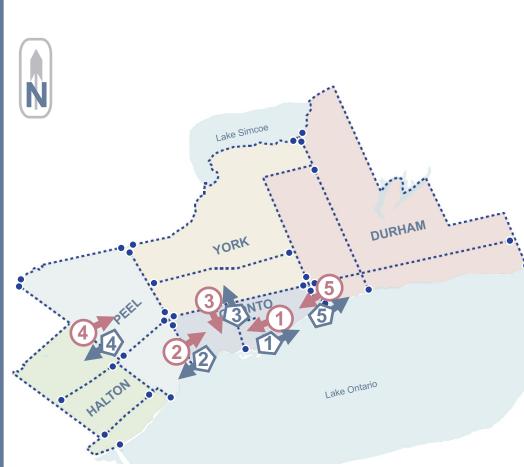
|                                 | 1991   | 2006   | Change | %    |
|---------------------------------|--------|--------|--------|------|
| Durham-Taunton Road             | -      | -      | -      | -    |
| Durham-Regional Road 23         | 2,983  | 5,417  | 2,434  | 82%  |
| GTA East                        | -      | -      | -      | -    |
| York-Durham Boundary            | -      | -      | -      | -    |
| York-Peel Boundary              | -      | -      | -      | -    |
| York North                      | -      | 351    | 351    | -    |
| South York Cordon               | -      | 2,714  | 2,714  | -    |
| 4 Peel-Halton Boundary          | 8,083  | 13,337 | 5,254  | 65%  |
| Peel North                      | -      | -      | -      | -    |
| Mississauga-Brampton            | 3,074  | 4,873  | 1,799  | 59%  |
| GTA West                        | -      | 691    | 691    | -    |
| Halton-Highway 401 (South)      | -      | -      | -      | -    |
| Dundas Street (Regional Road 5) | -      | -      | -      | -    |
| 5 Durham-Toronto Boundary       | 7,006  | 10,523 | 3,517  | 50%  |
| 3 Toronto-York Boundary         | 3,266  | 10,708 | 7,442  | 228% |
| 2)Toronto-Peel Boundary         | 20,734 | 32,689 | 11,955 | 58%  |
| Central Area Cordon             | 38,622 | 62,395 | 23,773 | 62%  |

#### GO RAIL PASSENGERS-Afternoon 3-Hour Peak Period-Peak Direction

|        |                              | 1991   | 2006   | Change | %    |
|--------|------------------------------|--------|--------|--------|------|
| Durl   | nam-Taunton Road             | -      | -      | -      | -    |
| Durl   | nam-Regional Road 23         | 2,753  | 4,473  | 1,720  | 62%  |
| GTA    | East                         | -      | -      | -      | -    |
| York   | c-Durham Boundary            | -      | -      | -      | -    |
| York   | -Peel Boundary               | -      | -      | -      | -    |
| York   | North                        | -      | 309    | 309    | -    |
| Sou    | th York Cordon               | -      | 2,160  | 2,160  | -    |
| 4 Pee  | I-Halton Boundary            | 6,992  | 10,392 | 3,400  | 49%  |
| Pee    | l North                      | -      | -      | -      | -    |
| Miss   | sissauga-Brampton            | 2,585  | 4,759  | 2,174  | 84%  |
| GTA    | West                         | -      | 533    | 533    | -    |
| Halt   | on-Highway 401 (South)       | -      | -      | -      | -    |
| 🗼 Dun  | das Street (Regional Road 5) | -      | -      | -      | -    |
| 5 Durl | nam-Toronto Boundary         | 7,282  | 9,600  | 2,318  | 32%  |
| 3 Toro | onto-York Boundary           | 2,738  | 9,971  | 7,233  | 264% |
| 2 Toro | onto-Peel Boundary           | 18,833 | 30,907 | 12,074 | 64%  |
| 1 Cen  | tral Area Cordon             | 35,511 | 57,233 | 21,722 | 61%  |

#### NOT TO SCALE

Morning 3-Hour Peak Direc


Afternoon 3-Hour Peak Direction

**6** Morning Largest Magnitude Numerical Change (1 = Largest)

Afternoon Largest Magnitude Numerical Change (1 = Largest)

MMM GROUP LIMITED

# FIGURE 4.1 Change in GO Rail Passenger (Peak Direction) Morning and Afternoon Peak Periods (1991 to 2006)



#### GO BUS PASSENGERS-Morning 3-Hour Peak Period-Peak Direction

|                                 | 1991  | 2006  | Change | %    |
|---------------------------------|-------|-------|--------|------|
| Durham-Taunton Road             | -     | 98    | 98     | -    |
| Durham-Regional Road 23         | -     | 667   | 667    | -    |
| GTA East                        | -     | -     | -      | -    |
| York-Durham Boundary            | -     | 4     | 4      | -    |
| York-Peel Boundary              | -     | 322   | 322    | -    |
| York North                      | -     | 62    | 62     | -    |
| South York Cordon               | -     | 764   | 764    | -    |
| Peel-Halton Boundary            | 975   | 415   | -560   | -57% |
| Peel North                      | -     | 20    | 20     | -    |
| Mississauga-Brampton            | 1,155 | 384   | -771   | -67% |
| GTA West                        | -     | 669   | 669    | -    |
| Halton-Highway 401 (South)      | -     | 3     | 3      | -    |
| Dundas Street (Regional Road 5) | -     | 48    | 48     | -    |
| Durham-Toronto Boundary         | -     | 612   | 612    | -    |
| Toronto-York Boundary           | -     | 2,086 | 2,086  | -    |
| Toronto-Peel Boundary           | -     | 708   | 708    | -    |
| Central Area Cordon             | -     | 227   | 227    | -    |

#### GO BUS PASSENGERS-Afternoon 3-Hour Peak Period-Peak Direction

|                                 | 1991  | 2006  | Change | %    |
|---------------------------------|-------|-------|--------|------|
| Durham-Taunton Road             | -     | 69    | 69     | -    |
| Durham-Regional Road 23         | -     | 491   | 491    | -    |
| GTA East                        | -     | -     | -      | -    |
| York-Durham Boundary            | -     | 7     | 7      | -    |
| York-Peel Boundary              | -     | 430   | 430    | -    |
| York North                      | -     | 89    | 89     | -    |
| 4 South York Cordon             | -     | 818   | 818    | -    |
| 2 Peel-Halton Boundary          | 1,632 | 191   | -1,441 | -88% |
| Peel North                      | 65    | 8     | -57    | -88% |
| Mississauga-Brampton            | 859   | 560   | -299   | -35% |
| GTA West                        | -     | 587   | 587    | -    |
| Halton-Highway 401 (South)      | -     | 1     | 1      | -    |
| Dundas Street (Regional Road 5) | -     | 136   | 136    | -    |
| 3 Durham-Toronto Boundary       | -     | 974   | 974    | -    |
| Toronto-York Boundary           | -     | 2,663 | 2,663  | -    |
| 5 Toronto-Peel Boundary         | -     | 658   | 658    | -    |
| Central Area Cordon             | -     | 561   | 561    | -    |

#### NOT TO SCALE

- Morning 3-Hour Peak Direction
- Afternoon 3-Hour Peak Direction
- **6** Morning Largest Magnitude Numerical Change (1 = Largest)
- Afternoon Largest Magnitude Numerical Change (1 = Largest) MMM GROUP LIMITED
- FIGURE 4.2 Change in GO Bus Passenger (Peak Direction) Morning and Afternoon Peak Periods (1991 to 2006)



# 5.0 COMMERCIAL TRAFFIC

#### 5.1 Focus

The effect of commercial traffic on roads is becoming increasingly crucial in planning for many areas of the GTA, especially with the increase in traffic volumes attributed to Just-in-Time Delivery (JIT).

This section presents the quantity of commercial vehicle trips (medium and heavy trucks) across the GTA screenlines during the combined morning and afternoon peak periods as well as the total count period.

Please refer to:

**Table 5.1** Commercial Vehicle Traffic (Both Directions)– Total Count Period (1991 to 2006).

*Table 5.2 Commercial Vehicle Traffic (Both Directions)* – *Combined Morning and Afternoon Peak Period (1991 to 2006).* 

*Figure 5.1 Time of Day Profile for Commercial Vehicles Crossing Screenlines – Total Count Period* (1991 to 2006).

## 5.2 Summary of Trends

#### 5.2.1 Total Count Period

The five screenlines with the highest numerical growth in commercial vehicle traffic in both directions during the total count period between 1991 and 2006 are shown below.

| GTA West              | +27,863 |
|-----------------------|---------|
| Toronto-York Boundary | +21,385 |
| York-Peel Boundary    | +19,235 |
| Mississauga-Brampton  | +15,964 |
| Peel-Halton Boundary  | +13,589 |

The five screenlines with the highest percentage growth in commercial vehicle traffic in both directions during the total count period between 1991 and 2006 are shown below.

| York-Peel Boundary   | +447% |
|----------------------|-------|
| York North           | +124% |
| York-Durham Boundary | +109% |
| Halton-Highway 401   | +105% |
| GTA West             | +100% |

The five screenlines with the highest 2006 percentage of commercial vehicle traffic in both directions combined during the total count period are shown below.

| GTA East             | 15% |
|----------------------|-----|
| GTA West             | 14% |
| York-Peel Boundary   | 13% |
| York-Durham Boundary | 11% |
| York North           | 10% |

The five screenlines with the lowest 2006 percentage of commercial vehicle traffic in both directions during the total count period are shown below.

| Central Area Cordon             | 3% |
|---------------------------------|----|
| Toronto-York Boundary           | 5% |
| Dundas Street (Regional Road 5) | 5% |
| Durham-Taunton Road             | 5% |
| Toronto-Peel Boundary           | 7% |

## 5.2.2 Combined Peak Period Traffic

The five screenlines with the highest numerical growth in commercial vehicle traffic in both directions during the combined morning and afternoon peak periods between 1991 and 2006 are shown below.



| GTA West              | +9,421 |
|-----------------------|--------|
| York-Peel Boundary    | +7,665 |
| Toronto-York Boundary | +7,440 |
| Mississauga-Brampton  | +6,529 |
| Peel-Halton Boundary  | +5,609 |

The five screenlines with the highest percentage growth in commercial vehicle traffic in both directions during combined morning and afternoon peak periods between 1991 and 2006 are shown below.

| York-Peel Boundary   | +405% |
|----------------------|-------|
| Mississauga-Brampton | +101% |
| York North           | +98%  |
| Halton-Highway 401   | +96%  |
| York-Durham Boundary | +84%  |

The five screenlines with the highest 2006 percentage of commercial vehicle traffic in both directions during the combined morning and afternoon peak period are shown below.

| GTA East             | 11% |
|----------------------|-----|
| GTA West             | 11% |
| York-Peel Boundary   | 8%  |
| Halton-Highway 401   | 6%  |
| Peel-Halton Boundary | 6%  |

The five screenlines with the lowest 2006 percentage of commercial vehicle traffic in both directions during the combined morning and afternoon peak period are shown below.

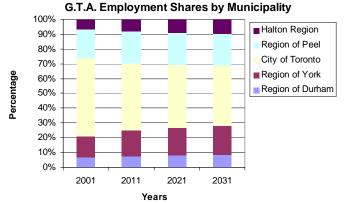
| Central Area Cordon              | 2% |
|----------------------------------|----|
| Toronto-York Boundary            | 4% |
| Dundas Street (Regional Road. 5) | 4% |
| Durham-Taunton Road              | 4% |
| South York Cordon                | 5% |

## 5.3 Conclusion

The results show a broadening of commercial traffic within the GTA and also crossing its boundaries. It is important to recognize that a significant number of commercial vehicle trips occur outside the total count period analysed. As discussed in the 2003 GTA Cordon Count Report, the 1999/2000 Commercial Vehicle Survey indicates that 30 to 50 percent of truck movements on major highways occur during the nighttime period, which is not collected by the cordon count stations.

The 2003 GTA Cordon Count Report (defining trends between 1991 and 2001) noted that commercial traffic was particularly strong in the western part of the GTA. This was apparent in the 1991 to 2006 analysis, with the GTA West accounting for the largest numerical growth in commercial traffic for both the total count period and the combined peak period.

The numerical difference between 1991 and 2006 for the total count period ranges from -2,860 to 27,863 commercial vehicles, with an average numerical growth of 8,530 commercial vehicles. The combined morning and afternoon peak periods shows a range of -1,057 to 9,421 and an average numerical growth of 3,120 between 1991 and 2006.


The volume growth in the combined morning and afternoon peak periods (a 6-hour period) represents only 37% of the growth in commercial traffic from 1991 to 2006. Therefore, the proportionally largest growth in commercial vehicle trips has been outside the morning and afternoon peak periods. This is likely due to commercial vehicles staggering their delivery times in order to avoid traffic congestion and to deliver goods in a more timely fashion. Further, a large number of the commercial vehicles have their origins and destinations outside the GTA (i.e. long haul freight trips). These vehicle operators have more flexibility in



choosing their travel times in order to avoid congestion and generally prefer to travel outside the total count period.

The only screenline showing a decrease in commercial traffic was the Central Area Cordon. The Central Area Cordon experienced a decrease of 1,060 (11%) and 2,860 (11%) during the combined morning and afternoon peak period and the total count period, respectively. This decrease may be attributed to the following factors:

- The spatial distribution and quantity of warehouse and manufacturing space has changed between 1991 and 2006. This is evident in the fact that Peel has become a major centre for multi-modal yards (i.e. CPR Vaughan Intermodal Yard, etc.); furthermore, there has been a shift in employment activity and development from the Central Area to other regions in the GTA from 1991 to 2006. This has likely resulted in some freight trips relocating to the outer suburbs and surrounding municipalities;
- Big-box retailers and power-centres have been developing outside the densely populated Central Area Cordon, where land is relatively inexpensive and more readily available. The number of big-box retailers is continuing to grow in the "905" area and by nature, big-box retailers tend to have a large supply of goods (thus generating a great deal of commercial traffic in order to remain stocked); and,
- An increasing amount of employment is being located outside the Central Area Cordon, as shown in the figure below. This growth as well as population increases would result in some retail activity following suit in order to take advantage of the emerging markets.



Source: Information obtained from the Places to Grow - Growth Plan for the Greater Golden Horseshoe (2006)

Also of note is the impact of major highway infrastructure on commercial vehicular traffic. The flow of commercial vehicle traffic has benefited from the construction of Highway 407, which straddles the GTA. The York-Peel Boundary and York-Durham Boundary have experienced 447% and 109% growth in total count period commercial vehicular traffic, respectively. This parallels the growth in noncommercial traffic described in previous chapters, compounding the challenges facing the '905' regions.



|                                 | 1991   | 2006   | Numerical % Change |          | % of Total Vehicle |      |
|---------------------------------|--------|--------|--------------------|----------|--------------------|------|
|                                 | 1991   | 2000   | Change             | % Change | 1991               | 2006 |
| Durham-Taunton Road             | 6,368  | 9,888  | 3,520              | 55%      | 6%                 | 5%   |
| Durham-Regional Road 23         | 10,137 | 17,550 | 7,413              | 73%      | 8%                 | 8%   |
| GTA East                        | 9,580  | 11,798 | 2,218              | 23%      | 15%                | 15%  |
| York-Durham Boundary            | 3,772  | 7,897  | 4,125              | 109%     | 9%                 | 11%  |
| York-Peel Boundary              | 4,301  | 23,536 | 19,235             | 447%     | 9%                 | 13%  |
| York North                      | 4,198  | 9,393  | 5,195              | 124%     | 8%                 | 10%  |
| South York Cordon               | 11,488 | 20,178 | 8,690              | 76%      | 6%                 | 8%   |
| Peel-Halton Boundary            | 25,104 | 38,693 | 13,589             | 54%      | 10%                | 8%   |
| Peel North                      | 2,337  | 3,776  | 1,439              | 62%      | 7%                 | 9%   |
| Mississauga-Brampton            | 17,859 | 33,823 | 15,964             | 89%      | 7%                 | 8%   |
| Halton-Highway 401 (South)      | 4,297  | 8,789  | 4,492              | 105%     | 9%                 | 8%   |
| Dundas Street (Regional Road 5) | 9,859  | 11,509 | 1,650              | 17%      | 7%                 | 5%   |
| Durham-Toronto Boundary         | 14,113 | 17,360 | 3,247              | 23%      | 8%                 | 7%   |
| Toronto-York Boundary           | 35,703 | 57,088 | 21,385             | 60%      | 4%                 | 5%   |
| Toronto-Peel Boundary           | 50,286 | 58,081 | 7,795              | 16%      | 6%                 | 7%   |
| Central Area Cordon             | 25,157 | 22,297 | -2,860             | -11%     | 3%                 | 3%   |
| GTA West                        | 27,973 | 55,836 | 27,863             | 100%     | 12%                | 14%  |

\*Commercial Vehicles Refers to Medium and Heavy Trucks

TABLE 5.1 Commercial Vehicle Traffic (Both Directions) Total Count Period (1991 to 2006)

|                                 | 1991   | 2006   | Numerical | % Change  | % of Tota | I Vehicles |
|---------------------------------|--------|--------|-----------|-----------|-----------|------------|
|                                 | 1991   | 2000   | Change    | 70 Change | 1991      | 2006       |
| Durham-Taunton Road             | 2,428  | 3,956  | 1,528     | 63%       | 5%        | 4%         |
| Durham-Regional Road 23         | 3,958  | 6,480  | 2,522     | 64%       | 6%        | 6%         |
| GTA East                        | 3,631  | 4,298  | 667       | 18%       | 12%       | 11%        |
| York-Durham Boundary            | 1,634  | 3,004  | 1,370     | 84%       | 6%        | 5%         |
| York-Peel Boundary              | 1,891  | 9,556  | 7,665     | 405%      | 7%        | 8%         |
| York North                      | 1,844  | 3,659  | 1,815     | 98%       | 6%        | 6%         |
| South York Cordon               | 4,977  | 7,845  | 2,868     | 58%       | 5%        | 5%         |
| Peel-Halton Boundary            | 8,977  | 14,586 | 5,609     | 62%       | 7%        | 6%         |
| Peel North                      | 923    | 1,291  | 368       | 40%       | 6%        | 6%         |
| Mississauga-Brampton            | 6,456  | 12,985 | 6,529     | 101%      | 5%        | 6%         |
| Halton-Highway 401 (South)      | 2,087  | 4,094  | 2,007     | 96%       | 8%        | 6%         |
| Dundas Street (Regional Road 5) | 4,470  | 4,686  | 216       | 5%        | 5%        | 4%         |
| Durham-Toronto Boundary         | 4,333  | 6,037  | 1,704     | 39%       | 5%        | 5%         |
| Toronto-York Boundary           | 13,319 | 20,759 | 7,440     | 56%       | 4%        | 4%         |
| Toronto-Peel Boundary           | 18,750 | 21,146 | 2,396     | 13%       | 5%        | 5%         |
| Central Area Cordon             | 9,427  | 8,370  | -1,057    | -11%      | 3%        | 2%         |
| GTA West                        | 12,934 | 22,355 | 9,421     | 73%       | 10%       | 11%        |

\*Commercial Vehicles Refers to Medium and Heavy Trucks

# TABLE 5.2Commercial Vehicle Traffic (Both Directions)Combined Morning and Afternoon Peak Period (1991 to 2006)

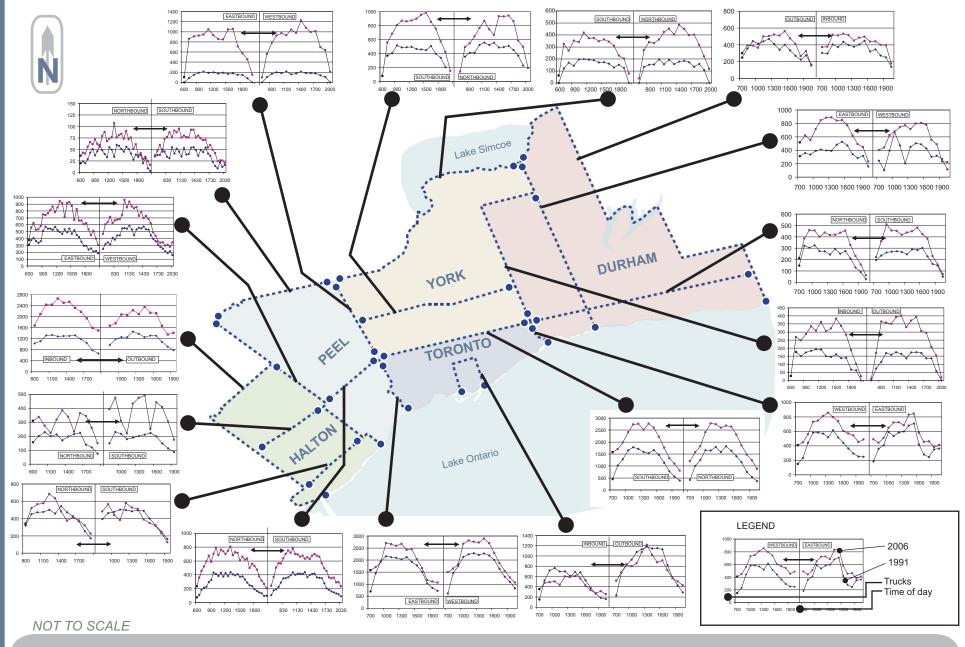



FIGURE 5.1

Time of Day Profile for Commercial Vehicles Crossing Screenlines Total Count Period (1991 to 2006)

# 6.0 USE OF MAJOR ROADS AND TRANSIT FACILITIES

### 6.1 Focus

An urban area generally relies on a network of highspeed and well-connected highway and transit infrastructure to allow for efficient movement of people and goods. The 400 series highways in the GTA along with the GO Rail and municipal transit networks play a major role in ensuring that mobility is maintained.

Please refer to:

*Figure 6.1 Highway and Transit Infrastructure Usage - Morning Peak Period (Peak Direction - 2006).* 

# 6.2 Summary of Trends

#### 6.2.1 Morning Peak Period

The five screenlines where the major highways carried the highest 2006 percentage of vehicles across the screenlines in the peak direction are shown below.

| Durham-Toronto Boundary | 89% |
|-------------------------|-----|
| GTA West                | 76% |
| Toronto-Peel Boundary   | 64% |
| York North              | 63% |
| South York Cordon       | 56% |

The five screenlines where major transit facilities (GO Rail and TTC Subway) carry the highest 2006 percentage of total persons across the screenline in the peak direction are shown below.

| Central Area Cordon     | 59% |
|-------------------------|-----|
| Toronto-Peel Boundary   | 23% |
| Durham-Toronto Boundary | 22% |
| Peel-Halton Boundary    | 16% |
| Durham-Regional Rd 23   | 14% |

# 6.3 Conclusions

The 400 series highways along with the GO Rail and TTC subway networks provide a high speed transportation network connecting the various GTA regions. The efficiency of the system can be gauged from the fact that both cross and reverse commuting in the GTA has become extensive over the past decade, with the continuing development and expansion of the major transportation network.

On screenlines that include a major highway, the major highway facilities attract nearly 38% (395,300) of the total traffic in the peak direction during the morning peak period. Further, of the total vehicles crossing all the screenlines in the peak direction during the morning peak period, nearly 40% (326,400) use the 400 series highways. Of note is York North where Highway 400 accounted for nearly 63% of the total vehicles crossing the screenline in the peak direction. A higher usage of highway facilities is experienced in cases where there is more than one such facility or there is a lack of alternative routes in the form of major arterials.

The major transit infrastructure has attracted nearly 26% (276,400) of the total person trips crossing the screenlines in the peak direction during the morning peak period. The Central Area Cordon is served by both the regional transit network as well as a comprehensive local network, and thus nearly 59% of the inbound morning peak period person trips crossing to the Central Area Cordon are made by transit. Where GO Rail service crosses a screenline, the percentage of total person trips using the service ranges from 1% to 23%. The TTC subway system accounts for nearly 40% of the person trips crossing the Central Area Cordon in the peak direction during the morning peak period.



#### HIGHWAY AND TRANSIT-Morning 3-Hour Peak Period-Peak Direction

|                                 | <b>D O i</b>       |                         |
|---------------------------------|--------------------|-------------------------|
|                                 | Person Crossings - | Vehicle Crossings-Major |
|                                 | GO Rail & TTC      | Highways                |
| York-Durham Boundary            | -                  | 5,996                   |
| Durham-Toronto Boundary         | 4 11,637           | 38,598                  |
| Toronto-York Boundary           | (5) 11,453         | 66,390                  |
| Toronto-Peel Boundary           | 2 32,222           | 68,498                  |
| York-Peel Boundary              | -                  | 13,708                  |
| York North                      | 351                | 12,403                  |
| GTA East                        | -                  | 3,551                   |
| Durham-Regional Road 23         | 5,417              | 17,046                  |
| South York Cordon               | 2,752              | 32,915                  |
| GTA West                        | 691                | 3 46,237                |
| Dundas Street (Regional Road 5) | -                  | 7,431                   |
| Peel-Halton Boundary            | 3 13,337           | 5 36,167                |
| Mississauga-Brampton            | 4,873              | 18,633                  |
| Central Area Cordon             | 1 193,615          | 27,683                  |
|                                 | -                  |                         |

#### NOT TO SCALE

Lake Simcoe

YORK

DURHAM

Lake Ontario

FIGURE 6.1 Morning 3-Hour Peak Direction S Largest Magnitude Numerical Change in Person Crossings - GO Rail & TTC (1 = Largest) Largest Magnitude Numerical Change in Vehicle Crossings - Major Highways (1 = Largest) Morning Peak Period (Peak Direction - 2006)

# 7.0 PEAKING CHARACTERISTICS

### 7.1 Focus

As a metropolitan region, the GTA continues to grow, the transportation infrastructure faces increasing pressure, and commuters respond by shifting their trip start times towards the "shoulders" of the traditional peak hour / peak period. Additionally, with an increasing number of office and commercial establishments offering flexible work hours, travel outside the traditional peak period is increasing relative to travel within the peaks.

This section analyzes the changes in travel by time of day across the GTA between 1991 and 2006.

Please refer to:

**Table 7.1** Ratio of Travel During Peak Hour to Peak 3-Hour Period (1991 to 2006).

**Table 7.2** Ratio of Travel During Combined PeakPeriods to Total Count Period (1991 to 2006).

*Figure 7.1 Peak Hour Spreading - Ratio of Travel During Peak Hour to 3-Hour Peak Period - Morning and Afternoon Peak Periods (1991 to 2006).* 

*Figure 7.2 Vehicle Peaking Characteristics by Time of Day – Total Count Period (1991 to 2006).* 

# 7.2 Summary of Trends

### 7.2.1 Morning Peak Period

The five screenlines with the lowest 2006 ratios of morning peak hour to morning peak 3-hour period vehicle crossings in the peak direction are shown below.

| Durham-Toronto Boundary | 33% |
|-------------------------|-----|
| Toronto-Peel Boundary   | 34% |
| GTA East                | 36% |
| York-Peel Boundary      | 36% |
| GTA West                | 36% |

The five screenlines that have experienced the largest drop in the ratio of morning peak hour to morning peak 3-hour period vehicle crossings in the peak direction from 1991 to 2006 are shown below. Thus these are the five with the greatest peak demand spreading.

| Mississauga-Brampton            | -6% |
|---------------------------------|-----|
| Durham-Regional Road 23         | -4% |
| Toronto-Peel Boundary           | -4% |
| Durham-Toronto Boundary         | -3% |
| Dundas Street (Regional Road 5) | -3% |

# 7.2.2 Afternoon Peak Period

The five screenlines with the lowest 2006 ratios of afternoon peak hour to afternoon peak 3-hour period vehicle crossings in the peak direction are shown below.

| Central Area Cordon   | 34% |
|-----------------------|-----|
| GTA East              | 35% |
| Toronto-York Boundary | 35% |
| Toronto-Peel Boundary | 35% |
| York-Peel Boundary    | 36% |

The five screenlines that have experienced the largest drop in the ratio of afternoon peak hour to afternoon peak 3-hour period vehicle crossings in the peak direction from 1991 to 2006 are shown below.



| Mississauga-Brampton            | -4% |
|---------------------------------|-----|
| York-Durham Boundary            | -3% |
| York North                      | -3% |
| York-Peel Boundary              | -3% |
| Dundas Street (Regional Road 5) | -2% |

# 7.2.3 Overall Peak Period

The ratio of the combined morning and afternoon 3hour peak periods to total count period vehicle crossings indicates the percentage of trips occurring during the peak periods relative to the total count period. For example, a low ratio indicates a large percentage of trips occur during the off-peak period.

The five screenlines with the lowest ratio of the combined morning and afternoon 3-hour peak periods to total count period vehicle crossings in both directions for 2006 are shown below.

| Halton-Highway 401    | 43% |
|-----------------------|-----|
| Central Area Cordon   | 48% |
| GTA East              | 48% |
| Toronto-Peel Boundary | 49% |
| Peel-Halton Boundary  | 50% |

The five screenlines with the largest decrease in the ratio of combined morning and afternoon peak periods to total count period vehicle crossings in both directions from 1991 to 2006 are shown below.

| Dundas Street (Regional Road 5) | -9% |
|---------------------------------|-----|
| GTA West                        | -5% |
| Mississauga-Brampton            | -1% |
| Halton-Highway 401              | -1% |
| Durham-Taunton Road             | 0%  |

# 7.2.4 Peak Period Variation

The two tables below show the morning and afternoon 3-hour peak period times for each region.

|         | Morning 3-Hour Peak Period |           |  |
|---------|----------------------------|-----------|--|
|         | 1991                       | 2006      |  |
| Durham  | 6:31-9:30                  | 6:16-9:15 |  |
| Halton  | 7:01-10:00                 | 6:31-9:30 |  |
| Peel    | 6:31-9:30                  | 6:31-9:30 |  |
| Toronto | 6:46-9:45                  | 6:46-9:45 |  |
| York    | 6:31-9:30                  | 6:31-9:30 |  |

|         | Afternoon 3-Hour Peak Period |             |  |
|---------|------------------------------|-------------|--|
|         | 1991                         | 2006        |  |
| Durham  | 15:31-18:30                  | 15:16-18:15 |  |
| Halton  | 15:16-18:15                  | 15:46-18:45 |  |
| Peel    | 15:31-18:30                  | 15:31-18:30 |  |
| Toronto | 15:31-18:30                  | 15:46-18:45 |  |
| York    | 15:31-18:30                  | 15:31-18:30 |  |

# 7.3 Conclusions

During the morning peak period, east-west traffic volumes across the screenlines exhibit the lowest peak hour to peak period ratio for 2006. The majority of this traffic is traveling to the City of Toronto. However an increasing employment base in regions outside the City of Toronto has resulted in cross-commuting patterns. These patterns have been further boosted by the high speed and relatively reliable connection provided by Highway 407, which connects the surrounding municipalities.

Similar trends are observed in the afternoon peak period, during which east-west travel again dominates. The only screenline capturing north-south vehicle crossings where the ratio of peak hour traffic to peak period traffic was relatively low is the Toronto-York Boundary. That the Toronto-York Boundary



experiences a prolonged "rush hour" in the afternoon peak period is expected, given that there are three 400 series highways crossing it and substantial development occurring in York Region.

The trends observed in the changing peak hour characteristics are also influenced in large part by development patterns across the GTA. The commutershed has expanded with significant growth in urban centres within and adjacent to the GTA between 1991 and 2006, which were previously outside the Additionally, travel distances that commutershed. earlier would have been considered only for occasional recreational trips are now part of the daily home to work commute (e.g. the current commutershed for the GTA has expanded as far north as the City of Barrie). These trends have in some cases resulted in the inability of the transportation network to keep pace with the growth in traffic. As a result, screenlines in these outlying areas have experienced the largest decrease in the ratio of peak hour to peak period traffic, which indicates a more uniform distribution of traffic in the peak period and more prolonged periods of congestion.

Of note are the screenlines comprising the GTA boundary - the peak hour spreading observed at these screenlines is a function of trips with a higher than average trip length as well as commercial traffic.

Another important trend observed in the cordon count data is the phenomenon of increasing travel in the offpeak period. This trend is likely the result of a number of factors such as:

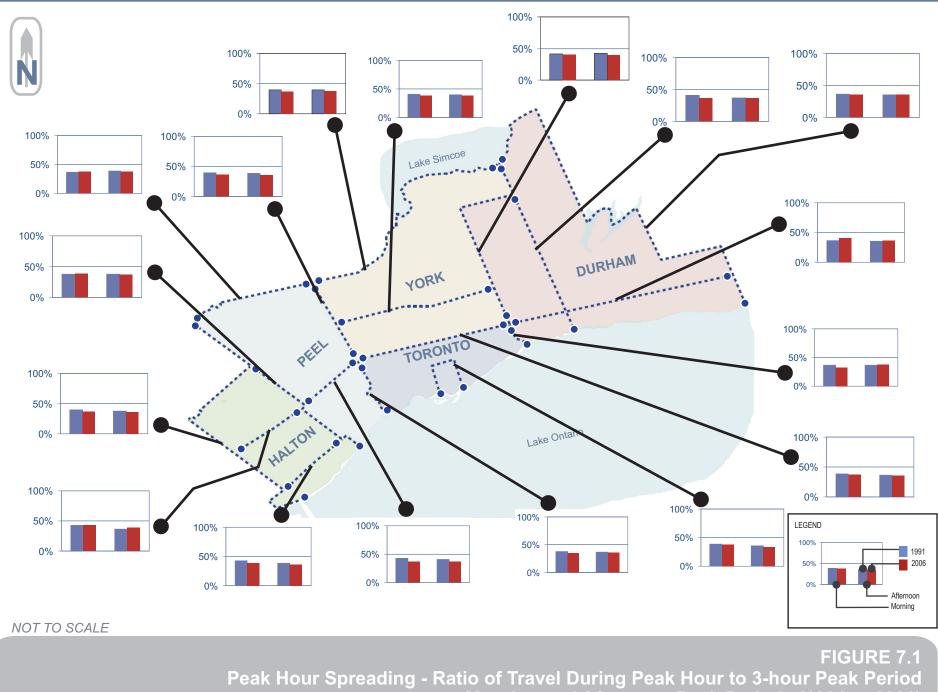
- Increasing peak period congestion, forcing trips to move into off-peak travel;
- Changing land use patterns (e.g. historic bedroom communities have become more self contained attracting commercial, office, industrial type land uses and the resulting off-peak trips);

- Demographic variables such as retirement of "baby boomers", increase in part-time or temporary workers, and increasing recreational trips; and,
- Flexible work hours adopted by employers in response to congestion.

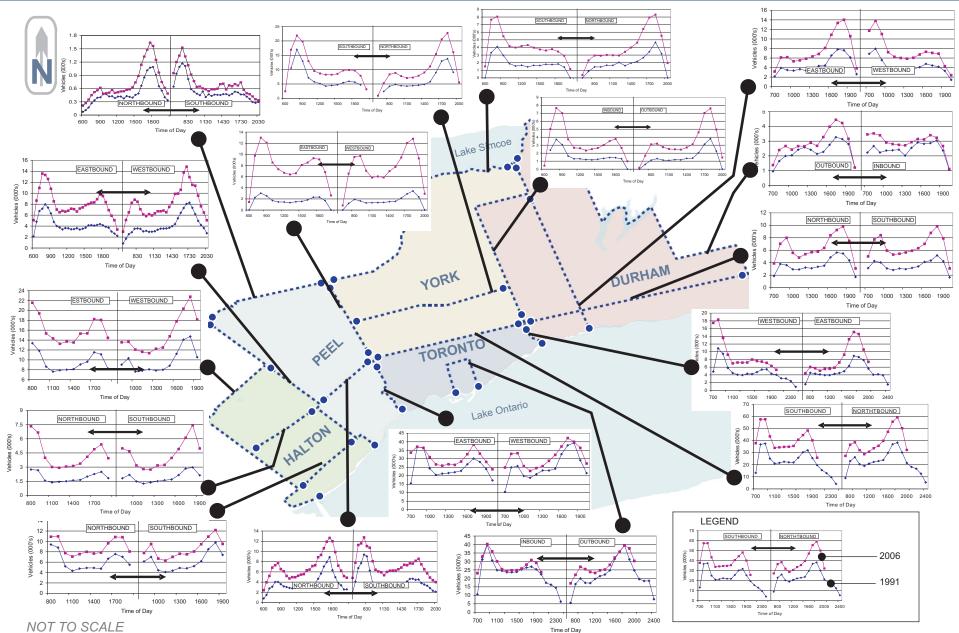
All the screenlines, except the York-Durham Boundary, have a ratio of combined morning and afternoon 3-hour peak periods travel to total count period travel of between 42% and 68% for 1991 and 2006. In 2006, this ratio for the York-Durham Boundary was approximately 84%, which represents an increase of approximately 25% over the 1991 value. This is a significant change compared to other values observed across the GTA as well as within York Region, and it warrants a further investigation in terms of validating the cordon count for that screenline. Both the Regional Municiaplity of York (except for the York-Durham Boundary) and the City of Toronto have experienced an increase in the ratio of combined 3-hour peak period crossings to the total count period vehicle crossings, ranging between 3% and 9%.

Variations in the time at which peak periods occur across the GTA are likely the result of driver behaviour, traffic conditions, and distance to the destination; for example, Durham Region has the earliest 2006 morning 3-hour peak of all five regions. This may be the result of Durham having less transportation infrastructure to support trips to and from Toronto relative to the other four regions; consequently, drivers from Durham to Toronto may have to leave earlier in order to avoid congestion on their limited choice of routes. From 1991 to 2006, Halton's morning peak period starts earlier and the afternoon peak period begins later. This is likely due to longer commutes and more congested highways.

These trends have an important bearing on transportation operations across the GTA (i.e. towards transit schedules, traffic operations, toll costs, etc.).




|                                 |       | eak Hour to<br>eak 3-Hours |       | eak Hour to<br>eak 3-Hours |
|---------------------------------|-------|----------------------------|-------|----------------------------|
|                                 | 1991  | 2006                       | 1991  | 2006                       |
| York North                      | 39.4% | 36.6%                      | 40.0% | 37.2%                      |
| York-Durham Boundary            | 41.6% | 40.4%                      | 42.2% | 39.1%                      |
| York-Peel Boundary              | 39.6% | 36.4%                      | 38.5% | 35.6%                      |
| South York Cordon               | 40.9% | 37.8%                      | 39.3% | 38.1%                      |
| Durham-Taunton Road             | 36.8% | 40.4%                      | 35.3% | 36.0%                      |
| Durham-Regional Road 23         | 41.1% | 36.8%                      | 36.3% | 36.3%                      |
| GTA East                        | 36.8% | 35.6%                      | 35.6% | 35.0%                      |
| Peel-Halton Boundary            | 38.0% | 38.3%                      | 37.5% | 37.0%                      |
| Peel North                      | 36.3% | 37.6%                      | 38.4% | 37.2%                      |
| Mississauga-Brampton            | 42.8% | 36.9%                      | 41.3% | 37.0%                      |
| Halton-Highway 401 (South)      | 43.1% | 42.2%                      | 37.0% | 39.0%                      |
| GTA West                        | 39.7% | 36.4%                      | 37.4% | 36.1%                      |
| Dundas Street (Regional Road 5) | 42.4% | 39.0%                      | 38.7% | 36.5%                      |
| Toronto-Peel Boundary           | 37.9% | 34.3%                      | 36.7% | 35.4%                      |
| Toronto-York Boundary           | 39.0% | 37.2%                      | 36.2% | 35.4%                      |
| Durham-Toronto Boundary         | 36.5% | 33.1%                      | 36.5% | 37.5%                      |
| Central Area Cordon             | 38.5% | 37.8%                      | 35.5% | 33.9%                      |


|                                                          | 1991                                       | 2006                  |
|----------------------------------------------------------|--------------------------------------------|-----------------------|
| York-Durham Boundary                                     | 59.2%                                      | 84.2%                 |
| York-Peel Boundary                                       | 57.7%                                      | 66.3%                 |
| York North                                               | 55.1%                                      | 63.0%                 |
| South York Cordon                                        | 60.4%                                      | 68.2%                 |
| Durham-Taunton Road                                      | 51.7%                                      | 52.2%                 |
| Durham-Regional Road 23                                  | 52.3%                                      | 53.7%                 |
| GTA East                                                 | 46.3%                                      | 48.5%                 |
| Peel North                                               | 48.4%                                      | 50.8%                 |
| Mississauga-Brampton                                     | 51.7%                                      | 50.8%                 |
| Halton-Highway 401 (South)                               | 59.2%                                      | 58.7%                 |
| Dundas Street (Regional Road 5)                          | 51.4%                                      | 42.5%                 |
| Durham-Toronto Boundary                                  | 46.7%                                      | 50.1%                 |
| Toronto-York Boundary                                    | 46.3%                                      | 50.9%                 |
| Toronto-Peel Boundary                                    | 45.9%                                      | 48.8%                 |
| Central Area Cordon                                      | 42.4%                                      | 48.1%                 |
| GTA West                                                 | 57.1%                                      | 52.5%                 |
| Peel-Halton Boundary                                     | 49.1%                                      | 50.0%                 |
| *Combined Deck Deried Deflects the Total Vahialas Creasi | ng Saraanlinga far tha Daak 2 Haur Marning | and Aftarnaan Dariada |

\*Combined Peak Period Reflects the Total Vehicles Crossing Screenlines for the Peak 3-Hour Morning and Afternoon Periods

TABLE 7.2 Ratio of Travel During Combined Peak Periods to Total Count Period (1991 to 2006)



Morning and Afternoon Peak Periods (1991 to 2006)



NOT TO SCALE

FIGURE 7.2 Vehicle Peaking Characteristics by Time of Day Total Count Period (1991 to 2006)

# 8.0 AUTO OCCUPANCY AND HIGH-OCCUPANCY VEHICLE LANES

# 8.1 Focus

As noted in the previous section on "Mode of Transportation", from 1991 to 2006, the auto trips across the screenlines have grown by nearly 451,500 (47%) during the morning 3-hour peak period for both directions. Additionally, due to the growing popularity of the personal automobile, travel by auto now accounts for nearly 1,402,300 (76%) of the person trips crossing the screenlines, compared to 950,800 (72%) in 1991 for the morning 3-hour peak period in both directions.

This section studies the trends being observed in auto occupancy and number of High Occupancy Vehicles (HOV) crossing screenlines, in the context of current policy initiatives related to expansion of the HOV network, new and improved local and inter-regional transit services, and location choices made by people and corporations.

Please refer to:

*Figure 8.1* Average Auto Occupancy (Peak Direction) -Morning and Afternoon Peak Periods (1991 to 2006).

*Figure 8.2 Change in Number of HOV 2+ Vehicles* (*Peak Direction*) - *Morning and Afternoon Peak Periods* (1991 to 2006).

*Figure 8.3 Change in Number of HOV 3+ Vehicles* (*Peak Direction*) - *Morning and Afternoon Peak Periods* (1991 to 2006).

# 8.2 Summary of Trends

# 8.2.1 Morning Peak Period Auto Occupancy

In 2006, the five screenlines with the highest average auto occupancy in the peak direction during the morning were as follows:

| Durham-Taunton Road     | 1.15 |
|-------------------------|------|
| Central Area Cordon     | 1.13 |
| GTA East                | 1.12 |
| GTA West                | 1.11 |
| Durham-Regional Road 23 | 1.11 |

The five screenlines with the lowest 2006 morning average auto occupancy in the peak direction are shown below.

| Durham-Toronto Boundary | 1.06 |
|-------------------------|------|
| York-Peel Boundary      | 1.07 |
| York-Durham Boundary    | 1.08 |
| Toronto-Peel Boundary   | 1.09 |
| South York Cordon       | 1.09 |

The five screenlines with the largest percentage change in auto occupancy from 1991 to 2006 in the morning peak direction are shown below.

| GTA East                | -15.0% |
|-------------------------|--------|
| Durham-Toronto Boundary | -11.6% |
| Toronto-York Boundary   | -8.7%  |
| Central Area Cordon     | -8.7%  |
| Peel North              | -8.6%  |

# 8.2.2 Morning Peak Period High Occupancy Vehicles

The five screenlines with the highest 2006 percentage of 2+ person HOV in the morning peak direction are shown below.



| Central Area Cordon     | 14.7% |
|-------------------------|-------|
| Durham-Taunton Road     | 13.3% |
| GTA East                | 11.4% |
| Durham-Regional Road 23 | 10.7% |
| GTA West                | 10.1% |

The five screenlines with the highest 2006 percentage of 3+ person HOV in the morning peak direction are shown below.

| Durham-Taunton Road             | 1.5% |
|---------------------------------|------|
| Dundas Street (Regional Road 5) | 1.1% |
| Central Area Cordon             | 1.1% |
| Mississauga-Brampton            | 1.0% |
| GTA West                        | 0.9% |

# 8.2.3 Afternoon Peak Period Auto Occupancy

The five screenlines with the highest 2006 average auto occupancy in the afternoon peak direction are shown below.

| GTA East                        | 1.28 |
|---------------------------------|------|
| Durham-Taunton Road             | 1.25 |
| Central Area Cordon             | 1.21 |
| Dundas Street (Regional Road 5) | 1.19 |
| Durham-Regional Road 23         | 1.18 |

The five screenlines with the lowest 2006 average auto occupancy in the afternoon peak direction are shown below.

| Durham-Toronto Boundary | 1.09 |
|-------------------------|------|
| Peel-Halton Boundary    | 1.10 |
| York North              | 1.13 |
| Toronto-Peel Boundary   | 1.14 |
| South York Cordon       | 1.14 |

The five screenlines with the largest percentage change in auto occupancy in the afternoon peak direction from 1991 to 2006 are shown below.

| York North              | -13.2% |
|-------------------------|--------|
| Peel-Halton Boundary    | -11.5% |
| Durham-Toronto Boundary | -11.3% |
| Durham-Taunton Road     | -10.4% |
| GTA East                | -10.2% |

# 8.2.4 Afternoon Peak Period High Occupancy Vehicles

The five screenlines with the highest 2006 percentage of 2+ person HOV in the afternoon peak direction are shown below.

| GTA East                        | 24.0% |
|---------------------------------|-------|
| Central Area Cordon             | 20.9% |
| Durham-Taunton Road             | 20.6% |
| Durham-Regional Road 23         | 16.7% |
| Dundas Street (Regional Road 5) | 16.2% |

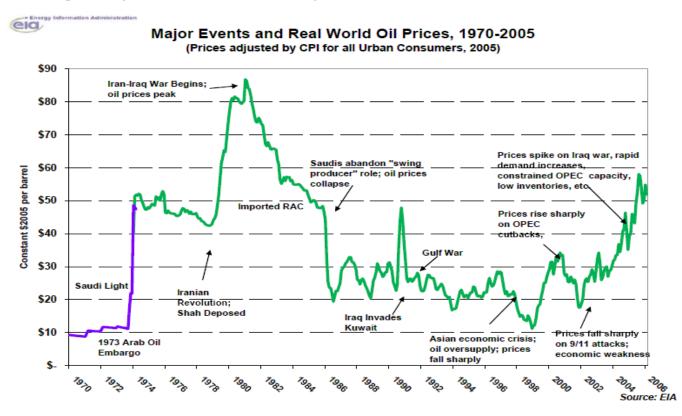
The five screenlines with the highest 2006 percentage of 3+ person HOV in the afternoon peak direction are shown below.

| GTA East                        | 3.3% |
|---------------------------------|------|
| Central Area Cordon             | 1.5% |
| Durham-Taunton Road             | 3.0% |
| Durham-Regional Road 23         | 1.4% |
| Dundas Street (Regional Road 5) | 2.4% |

# 8.3 Conclusions

This analysis addresses both the morning and afternoon peak periods in the peak direction. On average, auto occupancy was 5% higher in the afternoon peak period (1.16) than in the morning peak period (1.10).




The sheer number of vehicles, the speed of the traveling vehicles and other practical considerations such as increased number of vehicles with tinted windows make it difficult in collecting auto occupancy data. The numbers are approximate and reflect the overall trend in auto occupancy.

An important trend is that every screenline in both the morning and afternoon peak periods shows a drop in auto occupancy between 1991 and 2006 for the peak and off-peak directions. On average, auto occupancy has declined by approximately 0.09 (8%) in the morning peak period and approximately 0.11 (9%) in the afternoon peak period from 1991 to 2006. This is consistent with the 2003 GTA Cordon Count Report, which highlights that auto occupancy has declined from 1991 to 2001.

The drop in auto occupancy is not surprising given that oil prices have on average remained stable between 1991 and 2001 and only as recently as 2004 have started experiencing an increase as seen in the figure below. Consumer reaction to the price of oil is not as rapid as it is for other commodities.

Thus, although people have started making location and transportation choices to minimize their transportation costs, the impacts due to these actions is long term and should be more visible in subsequent cordon count reports. A key indicator that showcases the small change in auto ownership due to stable oil prices between 1991 and 2001 is the average auto ownership in different regions of the GTA, as shown below.

Other than the City of Toronto (9% decrease from 1991 to 2006), changes in auto ownership rates in the GTA regions have been minor. None of the changes in the '905' regions are significant enough to hypothesize that people have changed their behavior towards auto ownership.





| AVERAGE AUTOMOBILES PER HOUSEHOLD |        |      |      |
|-----------------------------------|--------|------|------|
|                                   | 1991   | 2001 | 2006 |
| Toronto                           | 1.18   | 1.09 | 1.07 |
| Durham                            | 1.74   | 1.73 | 1.74 |
| York                              | 1.89   | 1.90 | 1.84 |
| Peel                              | 1.71   | 1.70 | 1.67 |
| Halton                            | 1.76   | 1.74 | 1.76 |
| GTA Overall                       | 1.43   | 1.41 | 1.41 |
|                                   | 2006 7 |      | C )  |

(Source: Preliminary 2006 Transportation Tomorrow Survey)

These drops in auto occupancy could be the result of a number of factors. Some trends that could be the cause of this drop in auto occupancy are as follows:

- Family size has been reducing and family members have generally become more independent of each other. Family members tend to partake in increasingly more separate activities with different destinations;
- Commuting patterns have become increasingly more diverse (varied work hours, distance, and location), making it more difficult to organize shared rides; and,
- With trip times and trip lengths having substantially increased and employment having become more disaggregated and auto-oriented, carpooling becomes less attractive as the feasibility of two or more people sharing the same vehicle decline.

Overall, there are higher percentages of HOV 2+ and HOV 3+ trips during the afternoon peak period than in the morning peak period. This trend may be attributed to the fact that during the morning peak period there are two main trip purposes - home based work (HBW) and home based school (HBS), whereas during the afternoon peak period, individuals are more likely to participate in discretionary trips that will result in higher auto occupancy, such as picking children up from school and participating in group activities, shopping, or other non-work activities.

Determining the percentages of HOV 2+ and HOV 3+ is very useful in planning the occupancy restrictions and locations for HOV lanes; politicians, planners, and decision makers are likely to benefit from a deeper understanding of how many vehicles may occupy a new HOV lane, in addition to the origin and destination of these vehicles. The percentages of HOV 2+ and HOV 3+ vary by screenline. The percentage of HOV 3+ for the 2006 morning peak direction ranges from 0.2% to 1.5%; in the afternoon peak direction, it ranges from 0.6% to 3.3%. This is consistent with the 2003 GTA Cordon Count Report, which notes that HOV 3+ represents only 2% of all vehicles during peak periods at most screenlines. The percentage of HOV 2+ for the 2006 morning peak direction ranges from 5.5% to 14.7%, and in the afternoon peak, it ranges from 8.7% to 24.0%. Although the HOV 3+ percentages seem low relative to the HOV 2+ percentages, it should be noted that HOV is analyzed by vehicular trips rather than person trips. Three HOV 2 vehicle trips represent six person trips, whereas two HOV 3 vehicle trips also represent six person trips.

Trends shown in **Section 5.0** indicate that employment is generally decreasing in Toronto and increasing in the other municipalities in the GTA. Based on the trends observed in the cordon count data along with forecasted employment growth, greater HOV success stands to be gained by developing a consolidated GTA HOV network that not only focuses on the City of Toronto but also serves the increasing cross and reverse commuting taking place across the GTA.



|                                 | 1991 | 2006 | Change | %      |
|---------------------------------|------|------|--------|--------|
| Durham-Taunton Road             | 1.21 | 1.15 | -0.06  | -4.6%  |
| Durham-Regional Road 23         | 1.21 | 1.11 | -0.10  | -7.9%  |
| 1 GTA East                      | 1.32 | 1.12 | -0.20  | -15.0% |
| York-Durham Boundary            | 1.15 | 1.08 | -0.07  | -6.2%  |
| York-Peel Boundary              | 1.15 | 1.07 | -0.07  | -6.4%  |
| York North                      | 1.21 | 1.10 | -0.10  | -8.6%  |
| South York Cordon               | 1.18 | 1.09 | -0.09  | -7.6%  |
| Peel-Halton Boundary            | 1.15 | 1.10 | -0.06  | -5.0%  |
| 5 Peel North                    | 1.21 | 1.11 | -0.10  | -8.6%  |
| Mississauga-Brampton            | 1.17 | 1.11 | -0.06  | -5.5%  |
| GTA West                        | 1.19 | 1.11 | -0.08  | -6.6%  |
| Halton-Highway 401 (South)      | 1.15 | 1.11 | -0.04  | -3.3%  |
| Dundas Street (Regional Road 5) | 1.17 | 1.10 | -0.07  | -6.3%  |
| 2 Durham-Toronto Boundary       | 1.19 | 1.06 | -0.14  | -11.6% |
| 4 Toronto-York Boundary         | 1.21 | 1.10 | -0.10  | -8.7%  |
| Toronto-Peel Boundary           | 1.17 | 1.09 | -0.08  | -7.0%  |
| 3 Central Area Cordon           | 1.24 | 1.13 | -0.11  | -8.7%  |

#### AUTO OCCUPANCY-Morning 3-Hour Peak Period-Peak Direction

AUTO OCCUPANCY-Afternoon 3-Hour Peak Period-Peak Direction

|                                 | 1991 | 2006 | Change | %      |
|---------------------------------|------|------|--------|--------|
| 3 Durham-Taunton Road           | 1.39 | 1.25 | -0.14  | -10.4% |
| Durham-Regional Road 23         | 1.28 | 1.18 | -0.09  | -7.3%  |
| 2 GTA East                      | 1.43 | 1.28 | -0.15  | -10.2% |
| York-Durham Boundary            | 1.24 | 1.15 | -0.09  | -7.1%  |
| York-Peel Boundary              | 1.24 | 1.16 | -0.08  | -6.6%  |
| 1 York North                    | 1.30 | 1.13 | -0.17  | -13.2% |
| South York Cordon               | 1.20 | 1.14 | -0.06  | -4.9%  |
| 4 Peel-Halton Boundary          | 1.24 | 1.10 | -0.14  | -11.5% |
| Peel North                      | 1.27 | 1.17 | -0.10  | -8.1%  |
| Mississauga-Brampton            | 1.22 | 1.16 | -0.06  | -5.3%  |
| GTA West                        | 1.25 | 1.16 | -0.09  | -6.8%  |
| Halton-Highway 401 (South)      | 1.24 | 1.14 | -0.10  | -7.7%  |
| Dundas Street (Regional Road 5) | 1.23 | 1.19 | -0.04  | -3.1%  |
| 5 Durham-Toronto Boundary       | 1.23 | 1.09 | -0.14  | -11.3% |
| Toronto-York Boundary           | 1.27 | 1.15 | -0.12  | -9.3%  |
| Toronto-Peel Boundary           | 1.25 | 1.14 | -0.11  | -9.1%  |
| Central Area Cordon             | 1.33 | 1.21 | -0.13  | -9.5%  |

#### NOT TO SCALE

Afternoon 3-Hour Peak Direction

Morning Largest Magnitude Numerical Change (1 = Largest) (5)

Lake Simcoe

YORK

ORONTO

DURHAM

Lake Ontario

Afternoon Largest Magnitude Numerical Change (1 = Largest) 4

**FIGURE 8.1** Average Auto Occupancy (Peak Direction) Morning and Afternoon Peak Periods (1991 to 2006)

| 2+ HOV's-Morning | 3-Hour Peak | Period-Peak Direction |
|------------------|-------------|-----------------------|
|------------------|-------------|-----------------------|

|     |                                 | 1991   | 2006   | Change | %      |
|-----|---------------------------------|--------|--------|--------|--------|
|     | Durham-Taunton Road             | 1,794  | 2,427  | 633    | 35.3%  |
|     | Durham-Regional Road 23         | 3,264  | 3,472  | 208    | 6.4%   |
|     | GTA East                        | 1,475  | 926    | -549   | -37.2% |
|     | York-Durham Boundary            | 1,128  | 1,248  | 120    | 10.6%  |
|     | York-Peel Boundary              | 904    | 1,807  | 903    | 99.9%  |
|     | York North                      | 1,755  | 1,547  | -208   | -11.9% |
| 4   | South York Cordon               | 5,955  | 4,274  | -1,681 | -28.2% |
|     | Peel-Halton Boundary            | 4,842  | 5,748  | 906    | 18.7%  |
|     | Peel North                      | 894    | 603    | -291   | -32.6% |
|     | Mississauga-Brampton            | 5,684  | 5,405  | -279   | -4.9%  |
|     | GTA West                        | 4,013  | 5,190  | 1,177  | 29.3%  |
|     | Halton-Highway 401 (South)      | 632    | 1,647  | 1,015  | 160.6% |
|     | Dundas Street (Regional Road 5) | 2,722  | 2,385  | -337   | -12.4% |
| 3   | Durham-Toronto Boundary         | 4,273  | 2,143  | -2,130 | -49.8% |
| (5  | Toronto-York Boundary           | 15,524 | 13,848 | -1,676 | -10.8% |
| (1) | Toronto-Peel Boundary           | 13,793 | 8,405  | -5,388 | -39.1% |
| 2   | Central Area Cordon             | 19,851 | 14,489 | -5,362 | -27.0% |

#### 2+ HOV's-Afternoon 3-Hour Peak Period-Peak Direction

|                                 | 1991   | 2006   | Change | %      |
|---------------------------------|--------|--------|--------|--------|
| Durham-Taunton Road             | 4,531  | 4,944  | 413    | 9.1%   |
| Durham-Regional Road 23         | 4,694  | 5,912  | 1,218  | 25.9%  |
| GTA East                        | 2,698  | 2,527  | -171   | -6.3%  |
| York-Durham Boundary            | 1,833  | 2,439  | 606    | 33.1%  |
| 3 York-Peel Boundary            | 1,640  | 4,110  | 2,470  | 150.6% |
| York North                      | 2,668  | 2,315  | -353   | -13.2% |
| South York Cordon               | 5,919  | 6,739  | 820    | 13.9%  |
| 4 Peel-Halton Boundary          | 7,996  | 6,307  | -1,689 | -21.1% |
| Peel North                      | 1,152  | 1,207  | 55     | 4.8%   |
| Mississauga-Brampton            | 6,944  | 8,112  | 1,168  | 16.8%  |
| 5 GTA West                      | 6,439  | 8,069  | 1,630  | 25.3%  |
| Halton-Highway 401 (South)      | 1,225  | 2,207  | 982    | 80.2%  |
| Dundas Street (Regional Road 5) | 3,976  | 5,096  | 1,120  | 28.2%  |
| Durham-Toronto Boundary         | 4,587  | 3,263  | -1,324 | -28.9% |
| Toronto-York Boundary           | 21,145 | 21,230 | 85     | 0.4%   |
| Toronto-Peel Boundary           | 21,007 | 13,734 | -7,273 | -34.6% |
| 2 Central Area Cordon           | 27,244 | 21,963 | -5,281 | -19.4% |
|                                 |        |        |        |        |

#### NOT TO SCALE

Afternoon 3-Hour Peak Direction

**6** Morning Largest Magnitude Numerical Change (1 = Largest)

Lake Simcoe

YORK

DURHAM

Lake Ontario

Afternoon Largest Magnitude Numerical Change (1 = Largest) MMM GROUP LIMITED

Change in Number of HOV 2+ Vehicles (Peak Direction) Morning and Afternoon Peak Periods (1991 to 2006)

# FIGURE 8.2

| 3+ HOV's-Morning | 3-Hour Peak Period-Peak Direction |
|------------------|-----------------------------------|
|------------------|-----------------------------------|

|                                 | 1991  | 2006  | Change | %      |
|---------------------------------|-------|-------|--------|--------|
| Durham-Taunton Road             | 229   | 274   | 45     | 19.7%  |
| Durham-Regional Road 23         | 299   | 159   | -140   | -46.8% |
| GTA East                        | 270   | 69    | -201   | -74.4% |
| York-Durham Boundary            | 102   | 56    | -46    | -45.1% |
| York-Peel Boundary              | 105   | 67    | -38    | -36.2% |
| York North                      | 166   | 140   | -26    | -15.7% |
| South York Cordon               | 868   | 208   | -660   | -76.0% |
| Peel-Halton Boundary            | 500   | 247   | -253   | -50.6% |
| Peel North                      | 92    | 44    | -48    | -52.2% |
| Mississauga-Brampton            | 695   | 560   | -135   | -19.4% |
| GTA West                        | 618   | 470   | -148   | -23.9% |
| Halton-Highway 401 (South)      | 91    | 119   | 28     | 30.8%  |
| Dundas Street (Regional Road 5) | 458   | 296   | -162   | -35.4% |
| 5 Durham-Toronto Boundary       | 436   | 65    | -371   | -85.1% |
| Toronto-York Boundary           | 2,161 | 1,267 | -894   | -41.4% |
| 2 Toronto-Peel Boundary         | 1,509 | 534   | -975   | -64.6% |
| Central Area Cordon             | 2,156 | 1,042 | -1,114 | -51.7% |

#### 3+ HOV's-Afternoon 3-Hour Peak Period-Peak Direction

|                                 | 1991  | 2006  | Change | %      |
|---------------------------------|-------|-------|--------|--------|
| Durham-Taunton Road             | 924   | 721   | -203   | -22.0% |
| Durham-Regional Road 23         | 731   | 502   | -229   | -31.3% |
| GTA East                        | 527   | 346   | -181   | -34.3% |
| York-Durham Boundary            | 235   | 283   | 48     | 20.4%  |
| York-Peel Boundary              | 239   | 315   | 76     | 31.8%  |
| York North                      | 362   | 182   | -180   | -49.7% |
| South York Cordon               | 802   | 576   | -226   | -28.2% |
| Peel-Halton Boundary            | 1,132 | 464   | -668   | -59.0% |
| Peel North                      | 156   | 83    | -73    | -46.8% |
| Mississauga-Brampton            | 962   | 1,095 | 133    | 13.8%  |
| GTA West                        | 970   | 745   | -225   | -23.2% |
| Halton-Highway 401 (South)      | 222   | 202   | -20    | -9.0%  |
| Dundas Street (Regional Road 5) | 673   | 750   | 77     | 11.4%  |
| Durham-Toronto Boundary         | 584   | 241   | -343   | -58.7% |
| Toronto-York Boundary           | 3,387 | 1,967 | -1,420 | -41.9% |
| Toronto-Peel Boundary           | 3,149 | 1,214 | -1,935 | -61.4% |
| Central Area Cordon             | 4,722 | 1,607 | -3,115 | -66.0% |

#### NOT TO SCALE

Morning 3-Hour Peak Direction

Afternoon 3-Hour Peak Direction

**6** Morning Largest Magnitude Numerical Change (1 = Largest)

Lake Simcoe

YORK

DURHAM

Lake Ontario

Afternoon Largest Magnitude Numerical Change (1 = Largest) MMM GROUP LIMITED Change in Number of HOV 3+ Vehicles (Peak Direction) Morning and Afternoon Peak Periods (1991 to 2006)

# FIGURE 8.3

# 9.0 SCHOOL BUS VOLUMES AND OCCUPANCY

### 9.1 Focus

The majority of school trips are primary and secondary school trips, which are completed either by auto or school buses. This section analyzes and compares the trends in school bus volumes and school bus occupancy across the GTA.

Please refer to:

*Table 9.1* Number of School Bus Crossing Screenlines in Both Directions - Morning and Afternoon Peak Periods (2006).

**Table 9.2** School Bus Occupancy in Both Directions -Morning and Afternoon Peak Periods (2006).

### 9.2 Summary of Trends

#### 9.2.1 Morning Peak Period

The five screenlines with the highest 2006 school bus vehicle volumes in both directions are shown below.

| South York Cordon               | 535 |
|---------------------------------|-----|
| Durham-Taunton Road             | 428 |
| Dundas Street (Regional Road 5) | 427 |
| Toronto-York Boundary           | 411 |
| Central Area Cordon             | 390 |

The five screenlines with the highest 2006 school bus occupancy rates in both directions are shown below.

| GTA West                | 19.8 |
|-------------------------|------|
| Durham-Toronto Boundary | 18.5 |
| Toronto-Peel Boundary   | 11.6 |
| Toronto-York Boundary   | 10.5 |
| York North              | 10.3 |

The five screenlines with the lowest 2006 school bus occupancy rates in both directions are shown below.

| York-Durham Boundary | 3.0 |
|----------------------|-----|
| Peel North           | 3.1 |
| South York Cordon    | 3.5 |
| Halton-Highway 401   | 4.5 |
| Mississauga-Brampton | 4.9 |

#### 9.2.2 Afternoon Peak Period

The five screenlines with the highest 2006 school bus volumes in both directions are shown below.

| Central Area Cordon   | 336 |
|-----------------------|-----|
| Durham-Taunton Road   | 306 |
| South York Cordon     | 275 |
| Peel-Halton Boundary  | 224 |
| Toronto-York Boundary | 174 |

The five screenlines with the highest 2006 school bus occupancy rates in both directions are shown below.

| GTA West                | 13.8 |
|-------------------------|------|
| Peel-Halton Boundary    | 10.8 |
| Toronto-Peel Boundary   | 10.4 |
| Central Area Cordon     | 9.8  |
| Durham-Toronto Boundary | 8.7  |

The five screenlines with the lowest 2006 school bus occupancy rates in both directions are shown below.

| Peel North                      | 2.2 |
|---------------------------------|-----|
| York-Durham Boundary            | 2.6 |
| Mississauga-Brampton            | 4.1 |
| South York Cordon               | 4.2 |
| Dundas Street (Regional Road 5) | 4.8 |



#### 9.3 Conclusions

Only two regions (Durham and York) have data recorded for school buses and school bus occupancy in both 1991 and 2006. Thus a meaningful comparison across all the screenlines is not possible.

Of note from the above analysis is the inclusion of screenlines on regional boundaries that are capturing high volumes of school buses and school bus occupancy. This suggests either that a number of children are going to private schools in other regions, or that public schools in a given region allow in-take of students from other regions.

On average, 2006 school bus occupancy is higher in the morning peak period at approximately 8.1, compared to 7.2 in the afternoon peak period. This is mainly because school timings do not coincide with the afternoon peak period, which results in far fewer school buses and students crossing the screenlines in the evening. Some screenlines show significantly fewer school bus trips in the afternoon than in the morning. After-school programs, where students get picked up by their parents, contribute in part to the reduced afternoon school bus trips. This is also evident in the fact that auto occupancy tends to be higher in the afternoon. Additionally, the afternoon peak period for school buses is not the same as the afternoon peak period used for the overall analysis. The GTA West screenline has the highest school bus occupancy in the morning and afternoon peak periods.

Although screenlines include both regional and interurban boundaries, school trips tend to be local in nature and cannot be fully captured on the screenlines used in the analysis. The highest school bus vehicle volumes have occurred over inter-urban boundaries, indicating that a significant number of school children are traveling longer distances and from rural areas to attend school. A portion of school trips captured by the screenlines may also be attributed to school fieldtrips.

The latest available census data (2001 Census) estimates nearly 808,000 children attending school in the GTA. The analysis completed for this report suggests that just over 21,500 school children (2.7%) are going to schools in other regions based on the school bus occupancy recorded at the screenlines. This trend should be documented in future cordon count reports because it represents further evidence of cross-commuting between regions, albeit for a different trip purpose.



|                                 | Morning Peak Period | Afternoon Peak Period |
|---------------------------------|---------------------|-----------------------|
| Durham-Taunton Road             | 428                 | 306                   |
| Durham-Regional Road 23         | 154                 | 111                   |
| GTA East                        | 145                 | 119                   |
| York-Durham Boundary            | 134                 | 68                    |
| York-Peel Boundary              | 82                  | 51                    |
| York North                      | 51                  | 26                    |
| South York Cordon               | 535                 | 275                   |
| Peel-Halton Boundary            | 294                 | 224                   |
| Peel North                      | 126                 | 57                    |
| Mississauga-Brampton            | 312                 | 169                   |
| GTA West                        | 132                 | 73                    |
| Halton-Highway 401 (South)      | 108                 | 58                    |
| Dundas Street (Regional Road 5) | 427                 | 164                   |
| Durham-Toronto Boundary         | 82                  | 27                    |
| Toronto-York Boundary           | 411                 | 174                   |
| Toronto-Peel Boundary           | 323                 | 152                   |
| Central Area Cordon             | 390                 | 336                   |

TABLE 9.1Number of School Bus Crossing Screenlines in Both Directions<br/>Morning and Afternoon Peak Periods (2006)

|                                 | Morning Peak Period | Afternoon Peak Period |
|---------------------------------|---------------------|-----------------------|
| Durham-Taunton Road             | 3,157               | 1,912                 |
| Durham-Regional Road 23         | 999                 | 696                   |
| GTA East                        | 1,270               | 899                   |
| York-Durham Boundary            | 396                 | 175                   |
| York-Peel Boundary              | 671                 | 386                   |
| York North                      | 523                 | 222                   |
| South York Cordon               | 1,896               | 1,165                 |
| Peel-Halton Boundary            | 1,981               | 2,413                 |
| Peel North                      | 391                 | 127                   |
| Mississauga-Brampton            | 1,528               | 696                   |
| GTA West                        | 2,608               | 1,010                 |
| Halton-Highway 401 (South)      | 491                 | 351                   |
| Dundas Street (Regional Road 5) | 4,065               | 791                   |
| Durham-Toronto Boundary         | 1,516               | 235                   |
| Toronto-York Boundary           | 4,299               | 1,283                 |
| Toronto-Peel Boundary           | 3,747               | 1,588                 |
| Central Area Cordon             | 3,859               | 3,295                 |

TABLE 9.2 School Bus Occupancy in Both Directions Morning and Afternoon Peak Periods (2006)

# 10.0 REVERSE AND CROSS COMMUTING

#### 10.1 Focus

There is an increasing trend of reverse and cross commuting in large metropolitan areas that contain more than one dominant attractor or producer. This trend has become evident in the GTA over the past fifteen years with the development of major employment centres in the Regions of York and Peel, resulting in commuters traveling in the opposite direction of the traditional commuting patterns i.e. inbound to Toronto.

Please refer to:

*Table 10.1 Reverse Commuting – Ratio of Off-Peak to Peak Direction Vehicle Crossings (1991 to 2006).* 

*Figure 10.1 Reverse Commuting – Ratio of Off-Peak to Peak Direction Vehicle Crossings (1991 to 2006).* 

# 10.2 Summary of Trends

### 10.2.1 Morning Peak Period

The five screenlines with the highest 2006 ratio of offpeak direction to peak direction vehicle crossings are shown below.

| Durham-Taunton Road             | 90.5% |
|---------------------------------|-------|
| Toronto-Peel Boundary           | 87.5% |
| Dundas Street (Regional Road 5) | 78.9% |
| York-Peel Boundary              | 76.3% |
| Halton-Highway 401              | 72.1% |

The five screenlines that have experienced the largest increase in the 2006 ratio of off-peak direction to peak direction vehicle crossings are shown below.

| Peel-Halton Boundary  | 37.4% |
|-----------------------|-------|
| South York Cordon     | 34.7% |
| Central Area Cordon   | 30.0% |
| Mississauga-Brampton  | 26.4% |
| Toronto-Peel Boundary | 22.8% |

# 10.2.2 Afternoon Peak Period

The five screenlines with the highest 2006 ratio of offpeak direction to peak direction vehicle crossings are shown below.

| Durham-Taunton Road             | 95.5% |
|---------------------------------|-------|
| Dundas Street (Regional Road 5) | 92.1% |
| Toronto-Peel Boundary           | 84.7% |
| Toronto-York Boundary           | 80.7% |
| Central Area Cordon             | 78.4% |

The five screenlines that have experienced the largest increase in the 2006 ratio of off-peak direction to peak direction vehicle crossings are shown below.

| Peel-Halton Boundary  | 23.8% |
|-----------------------|-------|
| York-Durham Boundary  | 11.4% |
| Durham-Taunton Road   | 10.9% |
| Mississauga-Brampton  | 10.6% |
| Toronto-Peel Boundary | 10.4% |

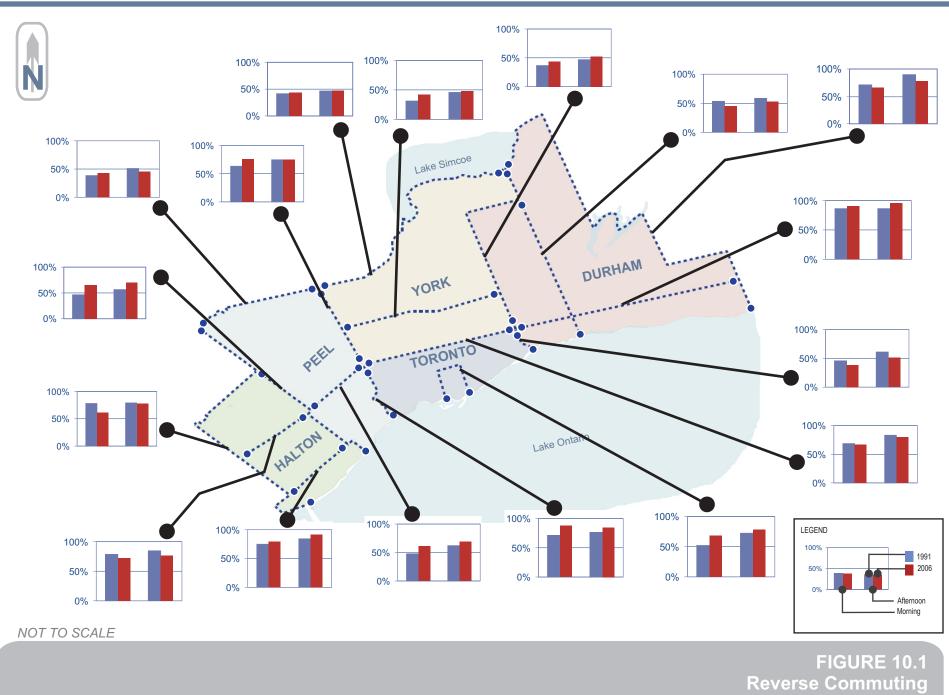
### 10.3 Conclusions

As the ratio of off-peak to peak direction vehicle crossings approaches 100%, there no longer exists a significant peak travel direction. As seen in the analysis, a number of screenlines are experiencing very high ratios and large increases in this ratio during both morning and afternoon peak periods.

Over the past decade, there has been rapid and significant development in the '905' area, which has resulted in a shift in travel patterns. The GTA has



gradually moved to a polycentric development pattern with significant employment centres located outside the traditional Central Business District of the City of Toronto. The construction of significant new transportation infrastructure like Highway 407 has also played a critical role in shifting travel patterns, with more people adjusting their home / work locations to take advantage of the facility.


A number of internal regional screenlines have experienced large increases in the ratio of off-peak to peak direction vehicle crossings e.g. Mississauga-Brampton, and the South York Cordon. A number of factors could be responsible for the improvements in the ratios at these screenlines, including increasing selfcontainment within local municipalities, and relocation of major businesses and institutions into previous greenfields.

Finally, the GTA commutershed is expanding and now includes surrounding municipalities such as Hamilton to some extent. This could explain the high ratios experienced along the western screenlines that are at the edge of the GTA boundary.



|                                 | Morning Peak Period |       | Afternoon Peak Peric |       |
|---------------------------------|---------------------|-------|----------------------|-------|
|                                 | 1991                | 2006  | 1991                 | 2006  |
| Durham-Taunton Road             | 86.8%               | 90.5% | 86.1%                | 95.5% |
| Durham-Regional Road 23         | 53.9%               | 45.4% | 58.6%                | 52.4% |
| GTA East                        | 71.4%               | 66.0% | 90.6%                | 77.2% |
| York-Durham Boundary            | 37.2%               | 44.2% | 46.5%                | 51.8% |
| York-Peel Boundary              | 63.2%               | 76.3% | 75.1%                | 75.3% |
| York North                      | 42.3%               | 43.7% | 46.3%                | 46.6% |
| South York Cordon               | 31.0%               | 41.8% | 45.7%                | 47.8% |
| Peel-Halton Boundary            | 47.2%               | 64.8% | 57.2%                | 70.8% |
| Peel North                      | 38.5%               | 42.5% | 51.3%                | 45.6% |
| Mississauga-Brampton            | 48.1%               | 60.7% | 62.6%                | 69.3% |
| GTA West                        | 78.5%               | 62.0% | 78.8%                | 78.1% |
| Halton-Highway 401 (South)      | 78.4%               | 72.1% | 85.1%                | 76.9% |
| Dundas Street (Regional Road 5) | 75.0%               | 78.9% | 84.6%                | 92.1% |
| Durham-Toronto Boundary         | 46.4%               | 38.7% | 61.4%                | 51.0% |
| Toronto-York Boundary           | 69.2%               | 67.2% | 83.4%                | 80.7% |
| Toronto-Peel Boundary           | 71.3%               | 87.5% | 76.7%                | 84.7% |
| Central Area Cordon             | 52.4%               | 68.1% | 72.4%                | 78.4% |

TABLE 10.1 Reverse Commuting Ratio of Off-Peak to Peak Direction Vehicle Crossings (1991 to 2006)



Ratio of Off-Peak to Peak Direction Vehicle Crossings (1991 to 2006)

# 11.0 METHODOLOGY ISSUES

During the course of the analysis completed for this study, a number of issues regarding the manner of collection of data and its storage were identified. The issues are separated in two main categories - first, data collection and summary, and second, data storage.

# 11.1 Data Collection and Summary

# **Classification of Heavy Trucks**

In the Regional Municipality of Peel, at least five categories of trucks have been counted in 2006, excluding light trucks. In the rest of the municipalities a maximum of three categories, excluding light trucks, were counted in 2006. This does not pose any problems but the analyst needs to be aware of the additional categories while summing up the total volumes for commercial vehicles.

# **Commercial Vehicle Data Counting Period**

A majority of the commercial vehicle traffic occurs during off-peak periods, both within and outside the total count period. In order to account for the volume of commercial traffic beyond the total count period, consideration should be given to a full 24 hour counting program at selected stations. The 24 hour count program in all likelihood would have to be conducted using automated counters set up along the 400 series highways.

This data would be very useful in identifying the impact of heavy commercial traffic on the major road network within the GTA and also in understanding the impact of congestion on freight shipper choices.

# **Person Trips Definition**

As noted in the report prepared on the 2001 cordon count program, the definition of total person and total person auto trips varies among the regions in the GTA.

It would be worthwhile to review these definitions and strive to achieve consistency throughout the GTA. In some cases, truck, bus, and taxi drivers are included in the calculation of person trips. These numbers are not sufficiently high enough to have a major impact on the trends. There could be some impact on auto occupancy levels. However, the impact is expected to be minimal and not significant enough to change the direction of the trends.

In the future, as these modes of transport become more important, this issue will need to be taken into account.

# **Count Scheduling**

Currently, the cordon count program is being conducted to coincide with the TTS and the Census. This provides the analyst, planner and decision maker a unique perspective from three different comprehensive data collection programs that target the travel trends, transportation patterns and demographic characteristics of the GTA.

It is recommended that a minimum five-year cycle should be maintained for conducting GTA wide cordon counts. Further, intermediate counts should be carried out in fast-growing areas at the discretion of each region based on resources and needs.

It would also be important that before future cordon count programs are undertaken, a thorough analysis of the screenlines should be completed. New screenlines that will help answer the questions on travel behavior and the success of certain transportation initiatives should be incorporated. At the same time, redundant



screenlines that no longer can shed light on the trends and topical transportation issues should be removed from the counting program.

## 11.2 Data Storage

In the course of this analysis a number of issues presented themselves relating to the style of data storage. The aim of this section is to present a possible direction for effectively storing the cordon count data in a more GIS based environment, which will allow for easier interpretation and display of the data. This will by no means negate the need for the user to understand the logistic and data management issues that arise with conducting such a comprehensive count program.

Some of the suggestions for more effective management of the data are as follows:

- Implement the relational database management system (RDBMS) in a GIS based environment. Currently, an overly simplified map is provided of the location of screenlines. This screenline map requires the user to interpret the location of screenlines based on unlabelled roads and features. No map is provided of counting stations. This requires users to interrupt the location of stations using the sometimes vague naming convention. It would be helpful to be able to determine the location of stations visually using a GIS based mapping system;
- The GIS based environment could be developed on the ARC IMS (Internet Mapping Service) platform, which will allow for dynamic querying of the database as well as allow for downloading the entire base cordon count network, including the screenlines, stations and the cordon count data;
- Under this system the inclusion or exclusion of stations and screenlines would be decided by the respective municipality, but the data preparation

and recording process will be common across the GTA; and

• In future, any modification to the data fields in terms of redefining them, adding or deleting will have to take place under the rules established by the RDBMS, which will limit errors in data compatibility and interpretation to a great extent.

Through the use of a RDBMS system in a GIS based environment (ARC IMS), the end user will be immensely benefited. The end user will be in a position to concentrate more effort toward interpreting the data and its trends with far less time spent on displaying it appropriately and checking it for discrepancies arising due to different data definitions or other issues.



# GLOSSARY

**'905' Region** - The Regional Municipalities of Durham, Halton, Peel, and York

Afternoon Peak Period – The 3-hour p.m. peak period shown in Appendix A

**Auto Occupancy** – Average number of occupants in an automobile, including the driver

**Commercial Traffic** – Heavy trucks (a truck with more than two axles) and Medium trucks (truck with more than four tires touching the road but with only two axles). Light trucks are not included in this definition.

**Home-Based Work (HBW) Trips** – Trips with one terminal at work and the other at home, with no intermediate stop

**HOV** (**High-Occupancy Vehicle**) – Automobiles with at least two occupants

Just-in-time delivery (JIT) – Goods arrive when needed, which helps reduce cost and the need for storage.

**Major Roads** – Includes Highways 400, 401, 403, 404, 407, 409, 410, and 427, the Queen Elizabeth Expressway, and the Gardiner Expressway.

**Morning Peak Period** – The 3-hour a.m. peak period shown in Appendix A

**Off-Peak Period** – The time of day occurring outside the peak period

**Other Transit** – includes all bus and subway service excluding GO Rail, GO Bus, and School Bus.

**Peak-Hour Spreading** (Peak Demand Spreading) - A reaction of drivers to road network conditions and increased congestion in the peak hours leading to the spread of trips over a longer time period.

**Polycentric Development** - A large centre surrounded by high density employment and population subcentres.

**Reverse Commuting** – A trip in the direction opposite to the heaviest traffic flow.

**Screenline** - A series of stations used to form a screenline. A screenline is a pre-determined imaginary line spanning a major road, municipal boundary, a man-made boundary (such a railway) or a natural boundary (such as a river). This analysis uses this screenlines defined in Figure 1.1.

**Stations** - Counting stations established at key travel locations throughout the GTA.

**Total Count Period** – The total count period shown in Appendix A

**Vehicles** – All auto, taxi, truck, transit, and school bus vehicles traveling on the surface road network.



# Appendix

# **APPENDIX A - PEAK PERIOD DEFINITIONS**

# PEAK PERIOD DEFINITIONS

| Morning Peak Period |          |          |          |         |         |          |          |         |
|---------------------|----------|----------|----------|---------|---------|----------|----------|---------|
|                     | 1991     | 1993     | 1995     | 1996    | 1998    | 2001     | 2004     | 2006    |
| Durham              | 631-930  |          |          | 631-930 | 631-930 | 631-930  | 631-930  | 616-915 |
| Halton              | 701-1000 |          | 701-1000 |         | 646-945 | 646-945  | 631-930  | 631-930 |
| Peel                | 631-930  | 631-930  | 631-930  |         | 631-930 | 631-930  | 631-930  | 631-930 |
| Toronto             | 646-945  | 701-1000 | 646-945  |         | 646-945 | 646-945  | 701-1000 | 646-945 |
| York                | 631-930  | 631-930  | 631-930  |         | 631-930 | 701-1000 | 631-930  | 631-930 |

|         | Afternoon Peak Period |           |           |           |           |           |           |           |  |
|---------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|         | 1991                  | 1993      | 1995      | 1996      | 1998      | 2001      | 2004      | 2006      |  |
| Durham  | 1531-1830             |           |           | 1531-1830 | 1501-1800 | 1516-1815 | 1531-1830 | 1516-1815 |  |
| Halton  | 1516-1815             |           | 1531-1830 |           | 1531-1830 | 1531-1830 | 1531-1830 | 1546-1845 |  |
| Peel    | 1531-1830             | 1531-1830 | 1531-1830 |           | 1531-1830 | 1531-1830 | 1531-1830 | 1531-1830 |  |
| Toronto | 1531-1830             | 1531-1830 | 1531-1830 |           | 1546-1845 | 1546-1845 | 1601-1900 | 1546-1845 |  |
| York    | 1531-1830             | 1531-1830 | 1531-1830 |           | 1531-1830 | 1531-1830 | 1531-1830 | 1531-1830 |  |

|         | Counting Period |          |          |          |          |          |          |          |
|---------|-----------------|----------|----------|----------|----------|----------|----------|----------|
|         | 1991            | 1993     | 1995     | 1996     | 1998     | 2001     | 2004     | 2006     |
| Durham  | 600-1945        |          |          | 600-1945 | 600-1900 | 600-1930 | 600-1930 | 600-1930 |
| Halton  | 700-1900        |          | 700-1900 |          | 600-1900 | 600-1900 | 600-1900 | 600-1900 |
| Peel    | 530-2130        | 530-2130 | 530-2130 |          | 530-2130 | 545-2030 | 545-2030 | 530-2030 |
| Toronto | 630-2330        | 545-2330 | 545-2330 |          | 600-2330 | 600-2000 | 600-2000 | 600-2000 |
| York    | 600-1900        | 600-1900 | 600-1900 |          | 600-1900 | 600-2000 | 600-1900 | 545-1930 |



Appendix

# **APPENDIX B - SCREENLINE DEFINITIONS**

| DETAILS ON SCREENLINES USED |
|-----------------------------|
|-----------------------------|

|                                 | Region  | Screenlines                | Additional Notes                                                                    |
|---------------------------------|---------|----------------------------|-------------------------------------------------------------------------------------|
| Durham-Taunton Road             | Durham  | 11, 12, 13, 14, 15, 16, 17 | -                                                                                   |
| Durham-Regional Road 23         | Durham  | 34, 35, 36, 37, 39         | -                                                                                   |
| GTA East                        | Durham  | 22, 25, 53, 56, 57, 58     | -                                                                                   |
| York-Durham Boundary            | York    | 2                          | -                                                                                   |
| York-Peel Boundary              | York    | 3                          | -                                                                                   |
| York North                      | York    | 1                          | -                                                                                   |
| South York Cordon               | York    | 5                          | -                                                                                   |
| Peel-Halton Boundary            | Peel    | 31                         | Peel Stations 94 and 100 Removed                                                    |
| Peel North                      | Peel    | 32                         | -                                                                                   |
| Mississauga-Brampton            | Peel    | 42                         | -                                                                                   |
| Halton-Highway 401 (South)      | Halton  | S-C1                       | -                                                                                   |
| Dundas Street (Regional Road 5) | Halton  | S-B3 and S-O3              | Halton Stations 1019, 1020, 5007<br>Removed                                         |
| Durham-Toronto Boundary         | Toronto | 1003                       | -                                                                                   |
| Toronto-York Boundary           | Toronto | 1002                       | -                                                                                   |
| Toronto-Peel Boundary           | Toronto | 1001                       | -                                                                                   |
| Central Area Cordon             | Toronto | 1014, 1035, 1058           | -                                                                                   |
| GTA West                        | Halton  | S-L1, S-L2, S-F1, and S-A3 | Peel Stations 94 and 100 Added and<br>Halton Stations 1019, 1020, and 5007<br>Added |

Some stations were removed from screenlines to form an accurate GTA West screenline, which was created for the purpose of this analysis.



Appendix

# **APPENDIX C - TOTAL COUNT PERIOD PEAK DIRECTION**

|                                 | TOTAL I   | PERSONS AND    | VEHICLES-Tot   | tal Count Perio | od-Peak Direct                                   | ion     |         |      |  |
|---------------------------------|-----------|----------------|----------------|-----------------|--------------------------------------------------|---------|---------|------|--|
|                                 | TOTAL PER | SONS- Total Co | ount Period-Pe | ak Direction    | TOTAL VEHICLES-Total Count Period-Peak Direction |         |         |      |  |
|                                 | 1991      | 2006           | Change         | %               | 1991                                             | 2006    | Change  | %    |  |
| Durham-Taunton Road             | 61,537    | 101,546        | 40,009         | 65%             | 49,467                                           | 92,323  | 42,856  | 87%  |  |
| Durham-Regional Road 23         | 77,784    | 113,576        | 35,792         | 46%             | 63,054                                           | 106,172 | 43,118  | 68%  |  |
| GTA East                        | 42,768    | 44,275         | 1,507          | 4%              | 33,936                                           | 41,173  | 7,237   | 21%  |  |
| York-Durham Boundary            | 27,359    | 42,270         | 14,911         | 55%             | 21,613                                           | 36,320  | 14,707  | 68%  |  |
| York-Peel Boundary              | 29,770    | 101,574        | 71,804         | 241%            | 23,950                                           | 93,369  | 69,419  | 290% |  |
| York North                      | 38,518    | 61,668         | 23,150         | 60%             | 28,738                                           | 49,821  | 21,083  | 73%  |  |
| South York Cordon               | 120,494   | 151,442        | 30,948         | 26%             | 93,764                                           | 127,599 | 33,835  | 36%  |  |
| Peel-Halton Boundary            | 161,745   | 260,584        | 98,839         | 61%             | 128,914                                          | 243,824 | 114,910 | 89%  |  |
| Peel North                      | 20,890    | 23,108         | 2,218          | 11%             | 17,132                                           | 22,002  | 4,870   | 28%  |  |
| Mississauga-Brampton            | 150,060   | 233,137        | 83,077         | 55%             | 130,380                                          | 219,896 | 89,516  | 69%  |  |
| GTA West                        | 155,402   | 258,927        | 103,525        | 67%             | 115,547                                          | 211,381 | 95,834  | 83%  |  |
| Halton-Highway 401 (South)      | 28,918    | 63,904         | 34,986         | 121%            | 23,113                                           | 55,954  | 32,841  | 142% |  |
| Dundas Street (Regional Road 5) | 94,059    | 131,622        | 37,563         | 40%             | 73,799                                           | 114,078 | 40,279  | 55%  |  |
| Durham-Toronto Boundary         | 106,148   | 140,754        | 34,606         | 33%             | 85,323                                           | 128,970 | 43,647  | 51%  |  |
| Toronto-York Boundary           | 469,026   | 634,273        | 165,247        | 35%             | 397,161                                          | 569,231 | 172,070 | 43%  |  |
| Toronto-Peel Boundary           | 499,891   | 489,732        | -10,159        | -2%             | 407,773                                          | 433,759 | 25,986  | 6%   |  |
| Central Area Cordon             | 896,027   | 868,251        | -27,776        | -3%             | 413,221                                          | 399,024 | -14,197 | -3%  |  |

